A General Framework for Robust Interactive Learning
Emamjomeh-Zadeh, Ehsan, Kempe, David
–Neural Information Processing Systems
We propose a general framework for interactively learning models, such as (binary or non-binary) classifiers, orderings/rankings of items, or clusterings of data points. Our framework is based on a generalization of Angluin's equivalence query model and Littlestone's online learning model: in each iteration, the algorithm proposes a model, and the user either accepts it or reveals a specific mistake in the proposal. The feedback is correct only with probability p 1/2 (and adversarially incorrect with probability 1 - p), i.e., the algorithm must be able to learn in the presence of arbitrary noise. The algorithm's goal is to learn the ground truth model using few iterations. Our general framework is based on a graph representation of the models and user feedback.
Neural Information Processing Systems
Feb-14-2020, 19:43:28 GMT