Jiang, Xinke
Efficient Large-Scale Traffic Forecasting with Transformers: A Spatial Data Management Perspective
Fang, Yuchen, Liang, Yuxuan, Hui, Bo, Shao, Zezhi, Deng, Liwei, Liu, Xu, Jiang, Xinke, Zheng, Kai
Road traffic forecasting is crucial in real-world intelligent transportation scenarios like traffic dispatching and path planning in city management and personal traveling. Spatio-temporal graph neural networks (STGNNs) stand out as the mainstream solution in this task. Nevertheless, the quadratic complexity of remarkable dynamic spatial modeling-based STGNNs has become the bottleneck over large-scale traffic data. From the spatial data management perspective, we present a novel Transformer framework called PatchSTG to efficiently and dynamically model spatial dependencies for large-scale traffic forecasting with interpretability and fidelity. Specifically, we design a novel irregular spatial patching to reduce the number of points involved in the dynamic calculation of Transformer. The irregular spatial patching first utilizes the leaf K-dimensional tree (KDTree) to recursively partition irregularly distributed traffic points into leaf nodes with a small capacity, and then merges leaf nodes belonging to the same subtree into occupancy-equaled and non-overlapped patches through padding and backtracking. Based on the patched data, depth and breadth attention are used interchangeably in the encoder to dynamically learn local and global spatial knowledge from points in a patch and points with the same index of patches. Experimental results on four real world large-scale traffic datasets show that our PatchSTG achieves train speed and memory utilization improvements up to $10\times$ and $4\times$ with the state-of-the-art performance.
RAGraph: A General Retrieval-Augmented Graph Learning Framework
Jiang, Xinke, Qiu, Rihong, Xu, Yongxin, Zhang, Wentao, Zhu, Yichen, Zhang, Ruizhe, Fang, Yuchen, Chu, Xu, Zhao, Junfeng, Wang, Yasha
Graph Neural Networks (GNNs) have become essential in interpreting relational data across various domains, yet, they often struggle to generalize to unseen graph data that differs markedly from training instances. In this paper, we introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph), which brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios. On the top of our framework is a toy graph vector library that we established, which captures key attributes, such as features and task-specific label information. During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks, integrating the retrieved data to enrich the learning context via the message-passing prompting mechanism. Our extensive experimental evaluations demonstrate that RAGraph significantly outperforms state-of-the-art graph learning methods in multiple tasks such as node classification, link prediction, and graph classification across both dynamic and static datasets. Furthermore, extensive testing confirms that RAGraph consistently maintains high performance without the need for task-specific fine-tuning, highlighting its adaptability, robustness, and broad applicability.
Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning
Xu, Yongxin, Zhang, Ruizhe, Jiang, Xinke, Feng, Yujie, Xiao, Yuzhen, Ma, Xinyu, Zhu, Runchuan, Chu, Xu, Zhao, Junfeng, Wang, Yasha
Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, existing methods lack effective control mechanisms for integrating internal and external knowledge. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples, identifies, and purposefully optimizes parameter subspaces related to adherence and robustness. Specifically, Parenting utilizes a key parameter mining method that combines forward and backward propagation signals to localize subspaces representing different capabilities. Then, Parenting employs a type-tailored tuning strategy, applying specific and appropriate optimizations to different subspaces, aiming to achieve a balanced enhancement of both adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our method.
3DS: Decomposed Difficulty Data Selection's Case Study on LLM Medical Domain Adaptation
Ding, Hongxin, Fang, Yue, Zhu, Runchuan, Jiang, Xinke, Zhang, Jinyang, Xu, Yongxin, Chu, Xu, Zhao, Junfeng, Wang, Yasha
Large Language Models (LLMs) excel in general tasks but struggle in specialized domains like healthcare due to limited domain-specific knowledge. Supervised Fine-Tuning (SFT) data construction for domain adaptation often relies on heuristic methods, such as GPT-4 annotation or manual data selection, with a datacentric focus on presumed diverse, high-quality datasets. However, these methods overlook the model's inherent knowledge distribution, introducing noise, redundancy, and irrelevant data, leading to a mismatch between the selected data and the model's learning task, resulting in suboptimal performance. To address this, we propose a two-stage model-centric data selection framework, Decomposed Difficulty Data Selection (3DS), which aligns data with the model's knowledge distribution for optimized adaptation. In Stage 1, we apply Prompt-Driven Data Selection via Explicit Alignment, where the model filters irrelevant or redundant data based on its internal knowledge. In Stage 2, we perform Decomposed Difficulty Data Selection, where data selection is guided by our defined difficulty decomposition, using three metrics: Instruction Understanding, Response Confidence, and Response Correctness. This two-stage approach ensures the selected data is not only aligned with the model's knowledge and preferences but also appropriately challenging for the model to learn, leading to more effective and targeted domain adaptation. In the case study of the medical domain, our extensive experiments on real-world healthcare datasets demonstrate the superiority of 3DS over existing methods in accuracy by over 5.29%. Our dataset and code will be open-sourced at https://anonymous.4open.science/r/3DS-E67F. Large Language Models (LLMs) like GPT-4 (OpenAI, 2023) have showcased significant potential in natural language understanding. Open-source models such as LLaMA (Touvron et al., 2023) and Qwen (Bai et al., 2023) have also rapidly advanced, delivering competitive performance.
FaiMA: Feature-aware In-context Learning for Multi-domain Aspect-based Sentiment Analysis
Yang, Songhua, Jiang, Xinke, Zhao, Hanjie, Zeng, Wenxuan, Liu, Hongde, Jia, Yuxiang
Multi-domain aspect-based sentiment analysis (ABSA) seeks to capture fine-grained sentiment across diverse domains. While existing research narrowly focuses on single-domain applications constrained by methodological limitations and data scarcity, the reality is that sentiment naturally traverses multiple domains. Although large language models (LLMs) offer a promising solution for ABSA, it is difficult to integrate effectively with established techniques, including graph-based models and linguistics, because modifying their internal architecture is not easy. To alleviate this problem, we propose a novel framework, Feature-aware In-context Learning for Multi-domain ABSA (FaiMA). The core insight of FaiMA is to utilize in-context learning (ICL) as a feature-aware mechanism that facilitates adaptive learning in multi-domain ABSA tasks. Specifically, we employ a multi-head graph attention network as a text encoder optimized by heuristic rules for linguistic, domain, and sentiment features. Through contrastive learning, we optimize sentence representations by focusing on these diverse features. Additionally, we construct an efficient indexing mechanism, allowing FaiMA to stably retrieve highly relevant examples across multiple dimensions for any given input. To evaluate the efficacy of FaiMA, we build the first multi-domain ABSA benchmark dataset. Extensive experimental results demonstrate that FaiMA achieves significant performance improvements in multiple domains compared to baselines, increasing F1 by 2.07% on average. Source code and data sets are anonymously available at https://github.com/SupritYoung/FaiMA.
Kuaiji: the First Chinese Accounting Large Language Model
Luo, Jiayuan, Yang, Songhua, Qiu, Xiaoling, Chen, Panyu, Nai, Yufei, Zeng, Wenxuan, Zhang, Wentao, Jiang, Xinke
Large Language Models (LLMs) like ChatGPT and GPT-4 have demonstrated impressive proficiency in comprehending and generating natural language. However, they encounter difficulties when tasked with adapting to specialized domains such as accounting. To address this challenge, we introduce Kuaiji, a tailored Accounting Large Language Model. Kuaiji is meticulously fine-tuned using the Baichuan framework, which encompasses continuous pre-training and supervised fine-tuning processes. Supported by CAtAcctQA, a dataset containing large genuine accountant-client dialogues, Kuaiji exhibits exceptional accuracy and response speed. Our contributions encompass the creation of the first Chinese accounting dataset, the establishment of Kuaiji as a leading open-source Chinese accounting LLM, and the validation of its efficacy through real-world accounting scenarios.
CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks
Duan, Yifan, Zhang, Guibin, Wang, Shilong, Peng, Xiaojiang, Ziqi, Wang, Mao, Junyuan, Wu, Hao, Jiang, Xinke, Wang, Kun
Credit card fraud poses a significant threat to the economy. While Graph Neural Network (GNN)-based fraud detection methods perform well, they often overlook the causal effect of a node's local structure on predictions. This paper introduces a novel method for credit card fraud detection, the \textbf{\underline{Ca}}usal \textbf{\underline{T}}emporal \textbf{\underline{G}}raph \textbf{\underline{N}}eural \textbf{N}etwork (CaT-GNN), which leverages causal invariant learning to reveal inherent correlations within transaction data. By decomposing the problem into discovery and intervention phases, CaT-GNN identifies causal nodes within the transaction graph and applies a causal mixup strategy to enhance the model's robustness and interpretability. CaT-GNN consists of two key components: Causal-Inspector and Causal-Intervener. The Causal-Inspector utilizes attention weights in the temporal attention mechanism to identify causal and environment nodes without introducing additional parameters. Subsequently, the Causal-Intervener performs a causal mixup enhancement on environment nodes based on the set of nodes. Evaluated on three datasets, including a private financial dataset and two public datasets, CaT-GNN demonstrates superior performance over existing state-of-the-art methods. Our findings highlight the potential of integrating causal reasoning with graph neural networks to improve fraud detection capabilities in financial transactions.
Time Series Supplier Allocation via Deep Black-Litterman Model
Luo, Jiayuan, Zhang, Wentao, Fang, Yuchen, Gao, Xiaowei, Zhuang, Dingyi, Chen, Hao, Jiang, Xinke
Time Series Supplier Allocation (TSSA) poses a complex NP-hard challenge, aimed at refining future order dispatching strategies to satisfy order demands with maximum supply efficiency fully. Traditionally derived from financial portfolio management, the Black-Litterman (BL) model offers a new perspective for the TSSA scenario by balancing expected returns against insufficient supply risks. However, its application within TSSA is constrained by the reliance on manually constructed perspective matrices and spatio-temporal market dynamics, coupled with the absence of supervisory signals and data unreliability inherent to supplier information. To solve these limitations, we introduce the pioneering Deep Black-Litterman Model (DBLM), which innovatively adapts the BL model from financial roots to supply chain context. Leveraging the Spatio-Temporal Graph Neural Networks (STGNNS), DBLM automatically generates future perspective matrices for TSSA, by integrating spatio-temporal dependency. Moreover, a novel Spearman rank correlation distinctively supervises our approach to address the lack of supervisory signals, specifically designed to navigate through the complexities of supplier risks and interactions. This is further enhanced by a masking mechanism aimed at counteracting the biases from unreliable data, thereby improving the model's precision and reliability. Extensive experimentation on two datasets unequivocally demonstrates DBLM's enhanced performance in TSSA, setting new standards for the field. Our findings and methodology are made available for community access and further development.
Infinite-Horizon Graph Filters: Leveraging Power Series to Enhance Sparse Information Aggregation
Zhang, Ruizhe, Jiang, Xinke, Fang, Yuchen, Luo, Jiayuan, Xu, Yongxin, Zhu, Yichen, Chu, Xu, Zhao, Junfeng, Wang, Yasha
Graph Neural Networks (GNNs) have shown considerable effectiveness in a variety of graph learning tasks, particularly those based on the message-passing approach in recent years. However, their performance is often constrained by a limited receptive field, a challenge that becomes more acute in the presence of sparse graphs. In light of the power series, which possesses infinite expansion capabilities, we propose a novel Graph Power Filter Neural Network (GPFN) that enhances node classification by employing a power series graph filter to augment the receptive field. Concretely, our GPFN designs a new way to build a graph filter with an infinite receptive field based on the convergence power series, which can be analyzed in the spectral and spatial domains. Besides, we theoretically prove that our GPFN is a general framework that can integrate any power series and capture long-range dependencies. Finally, experimental results on three datasets demonstrate the superiority of our GPFN over state-of-the-art baselines.
Think and Retrieval: A Hypothesis Knowledge Graph Enhanced Medical Large Language Models
Jiang, Xinke, Zhang, Ruizhe, Xu, Yongxin, Qiu, Rihong, Fang, Yue, Wang, Zhiyuan, Tang, Jinyi, Ding, Hongxin, Chu, Xu, Zhao, Junfeng, Wang, Yasha
We explore how the rise of Large Language Models (LLMs) significantly impacts task performance in the field of Natural Language Processing. We focus on two strategies, Retrieval-Augmented Generation (RAG) and Fine-Tuning (FT), and propose the Hypothesis Knowledge Graph Enhanced (HyKGE) framework, leveraging a knowledge graph to enhance medical LLMs. By integrating LLMs and knowledge graphs, HyKGE demonstrates superior performance in addressing accuracy and interpretability challenges, presenting potential applications in the medical domain. Our evaluations using real-world datasets highlight HyKGE's superiority in providing accurate knowledge with precise confidence, particularly in complex and difficult scenarios. The code will be available until published.