Goto

Collaborating Authors

 Jacobson, Alec


SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting

arXiv.org Artificial Intelligence

3D Gaussian Splatting (3DGS) is a promising technique for 3D reconstruction, offering efficient training and rendering speeds, making it suitable for real-time applications.However, current methods require highly controlled environments (no moving people or wind-blown elements, and consistent lighting) to meet the inter-view consistency assumption of 3DGS. This makes reconstruction of real-world captures problematic. We present SpotlessSplats, an approach that leverages pre-trained and general-purpose features coupled with robust optimization to effectively ignore transient distractors. Our method achieves state-of-the-art reconstruction quality both visually and quantitatively, on casual captures.


Text-guided Controllable Mesh Refinement for Interactive 3D Modeling

arXiv.org Artificial Intelligence

We propose a novel technique for adding geometric details to an input coarse 3D mesh guided by a text prompt. Our method is composed of three stages. First, we generate a single-view RGB image conditioned on the input coarse geometry and the input text prompt. This single-view image generation step allows the user to pre-visualize the result and offers stronger conditioning for subsequent multi-view generation. Second, we use our novel multi-view normal generation architecture to jointly generate six different views of the normal images. The joint view generation reduces inconsistencies and leads to sharper details. Third, we optimize our mesh with respect to all views and generate a fine, detailed geometry as output. The resulting method produces an output within seconds and offers explicit user control over the coarse structure, pose, and desired details of the resulting 3D mesh. Project page: https://text-mesh-refinement.github.io.


Neural Progressive Meshes

arXiv.org Artificial Intelligence

The recent proliferation of 3D content that can be consumed on hand-held devices necessitates efficient tools for transmitting large geometric data, e.g., 3D meshes, over the Internet. Detailed high-resolution assets can pose a challenge to storage as well as transmission bandwidth, and level-of-detail techniques are often used to transmit an asset using an appropriate bandwidth budget. It is especially desirable for these methods to transmit data progressively, improving the quality of the geometry with more data. Our key insight is that the geometric details of 3D meshes often exhibit similar local patterns even across different shapes, and thus can be effectively represented with a shared learned generative space. We learn this space using a subdivision-based encoder-decoder architecture trained in advance on a large collection of surfaces. We further observe that additional residual features can be transmitted progressively between intermediate levels of subdivision that enable the client to control the tradeoff between bandwidth cost and quality of reconstruction, providing a neural progressive mesh representation. We evaluate our method on a diverse set of complex 3D shapes and demonstrate that it outperforms baselines in terms of compression ratio and reconstruction quality.


Data-Free Learning of Reduced-Order Kinematics

arXiv.org Artificial Intelligence

Physical systems ranging from elastic bodies to kinematic linkages are defined on high-dimensional configuration spaces, yet their typical low-energy configurations are concentrated on much lower-dimensional subspaces. This work addresses the challenge of identifying such subspaces automatically: given as input an energy function for a high-dimensional system, we produce a low-dimensional map whose image parameterizes a diverse yet low-energy submanifold of configurations. The only additional input needed is a single seed configuration for the system to initialize our procedure; no dataset of trajectories is required. We represent subspaces as neural networks that map a low-dimensional latent vector to the full configuration space, and propose a training scheme to fit network parameters to any system of interest. This formulation is effective across a very general range of physical systems; our experiments demonstrate not only nonlinear and very low-dimensional elastic body and cloth subspaces, but also more general systems like colliding rigid bodies and linkages. We briefly explore applications built on this formulation, including manipulation, latent interpolation, and sampling.


Adversarial Geometry and Lighting using a Differentiable Renderer

arXiv.org Machine Learning

Many machine learning classifiers are vulnerable to adversarial attacks, inputs with perturbations designed to intentionally trigger misclassification. Modern adversarial methods either directly alter pixel colors, or "paint" colors onto a 3D shapes. We propose novel adversarial attacks that directly alter the geometry of 3D objects and/or manipulate the lighting in a virtual scene. We leverage a novel differentiable renderer that is efficient to evaluate and analytically differentiate. Our renderer generates images realistic enough for correct classification by common pre-trained models, and we use it to design physical adversarial examples that consistently fool these models. We conduct qualitative and quantitate experiments to validate our adversarial geometry and adversarial lighting attack capabilities.