He, Zihao
FoAR: Force-Aware Reactive Policy for Contact-Rich Robotic Manipulation
He, Zihao, Fang, Hongjie, Chen, Jingjing, Fang, Hao-Shu, Lu, Cewu
Contact-rich tasks present significant challenges for robotic manipulation policies due to the complex dynamics of contact and the need for precise control. Vision-based policies often struggle with the skill required for such tasks, as they typically lack critical contact feedback modalities like force/torque information. To address this issue, we propose FoAR, a force-aware reactive policy that combines high-frequency force/torque sensing with visual inputs to enhance the performance in contact-rich manipulation. Built upon the RISE policy, FoAR incorporates a multimodal feature fusion mechanism guided by a future contact predictor, enabling dynamic adjustment of force/torque data usage between non-contact and contact phases. Its reactive control strategy also allows FoAR to accomplish contact-rich tasks accurately through simple position control. Experimental results demonstrate that FoAR significantly outperforms all baselines across various challenging contact-rich tasks while maintaining robust performance under unexpected dynamic disturbances. Project website: https://tonyfang.net/FoAR/
Improving and Assessing the Fidelity of Large Language Models Alignment to Online Communities
Chu, Minh Duc, He, Zihao, Dorn, Rebecca, Lerman, Kristina
Large language models (LLMs) have shown promise in representing individuals and communities, offering new ways to study complex social dynamics. However, effectively aligning LLMs with specific human groups and systematically assessing the fidelity of the alignment remains a challenge. This paper presents a robust framework for aligning LLMs with online communities via instruction-tuning and comprehensively evaluating alignment across various aspects of language, including authenticity, emotional tone, toxicity, and harm. We demonstrate the utility of our approach by applying it to online communities centered on dieting and body image. We administer an eating disorder psychometric test to the aligned LLMs to reveal unhealthy beliefs and successfully differentiate communities with varying levels of eating disorder risk. Our results highlight the potential of LLMs in automated moderation and broader applications in public health and social science research.
Feelings about Bodies: Emotions on Diet and Fitness Forums Reveal Gendered Stereotypes and Body Image Concerns
Sรกnchez, Cinthia, Chu, Minh Duc, He, Zihao, Dorn, Rebecca, Murray, Stuart, Lerman, Kristina
The gendered expectations about ideal body types can lead to body image concerns, dissatisfaction, and in extreme cases, disordered eating and other psychopathologies across the gender spectrum. While research has focused on pro-anorexia online communities that glorify the 'thin ideal', less attention has been given to the broader spectrum of body image concerns or how emerging disorders like muscle dysmorphia ('bigorexia') present in online discussions. To address these gaps, we analyze 46 Reddit discussion forums related to diet, fitness, and associated mental health challenges. Using membership structure analysis and transformer-based language models, we project these communities along gender and body ideal axes, revealing complex interactions between gender, body ideals, and emotional expression. Our findings show that feminine-oriented communities generally express more negative emotions, particularly in thinness-promoting forums. Conversely, communities focused on the muscular ideal exhibit less negativity, regardless of gender orientation. We also uncover a gendered pattern in emotional indicators of mental health challenges, with communities discussing serious issues aligning more closely with thinness-oriented, predominantly feminine-leaning communities. By revealing the gendered emotional dynamics of online communities, our findings can inform the development of more effective content moderation approaches that facilitate supportive interactions, while minimizing exposure to potentially harmful content.
COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities
He, Zihao, Dorn, Rebecca, Guo, Siyi, Chu, Minh Duc, Lerman, Kristina
Social scientists use surveys to probe the opinions and beliefs of populations, but these methods are slow, costly, and prone to biases. Recent advances in large language models (LLMs) enable creating computational representations or "digital twins" of populations that generate human-like responses mimicking the population's language, styles, and attitudes. We introduce Community-Cross-Instruct, an unsupervised framework for aligning LLMs to online communities to elicit their beliefs. Given a corpus of a community's online discussions, Community-Cross-Instruct automatically generates instruction-output pairs by an advanced LLM to (1) finetune an foundational LLM to faithfully represent that community, and (2) evaluate the alignment of the finetuned model to the community. We demonstrate the method's utility in accurately representing political and fitness communities on Reddit. Unlike prior methods requiring human-authored instructions, Community-Cross-Instruct generates instructions in a fully unsupervised manner, enhancing scalability and generalization across domains. This work enables cost-effective and automated surveying of diverse online communities.
Whose Emotions and Moral Sentiments Do Language Models Reflect?
He, Zihao, Guo, Siyi, Rao, Ashwin, Lerman, Kristina
Language models (LMs) are known to represent the perspectives of some social groups better than others, which may impact their performance, especially on subjective tasks such as content moderation and hate speech detection. To explore how LMs represent different perspectives, existing research focused on positional alignment, i.e., how closely the models mimic the opinions and stances of different groups, e.g., liberals or conservatives. However, human communication also encompasses emotional and moral dimensions. We define the problem of affective alignment, which measures how LMs' emotional and moral tone represents those of different groups. By comparing the affect of responses generated by 36 LMs to the affect of Twitter messages, we observe significant misalignment of LMs with both ideological groups. This misalignment is larger than the partisan divide in the U.S. Even after steering the LMs towards specific ideological perspectives, the misalignment and liberal tendencies of the model persist, suggesting a systemic bias within LMs.
Don't Blame the Data, Blame the Model: Understanding Noise and Bias When Learning from Subjective Annotations
Anand, Abhishek, Mokhberian, Negar, Kumar, Prathyusha Naresh, Saha, Anweasha, He, Zihao, Rao, Ashwin, Morstatter, Fred, Lerman, Kristina
Researchers have raised awareness about the harms of aggregating labels especially in subjective tasks that naturally contain disagreements among human annotators. In this work we show that models that are only provided aggregated labels show low confidence on high-disagreement data instances. While previous studies consider such instances as mislabeled, we argue that the reason the high-disagreement text instances have been hard-to-learn is that the conventional aggregated models underperform in extracting useful signals from subjective tasks. Inspired by recent studies demonstrating the effectiveness of learning from raw annotations, we investigate classifying using Multiple Ground Truth (Multi-GT) approaches. Our experiments show an improvement of confidence for the high-disagreement instances.
Reading Between the Tweets: Deciphering Ideological Stances of Interconnected Mixed-Ideology Communities
He, Zihao, Rao, Ashwin, Guo, Siyi, Mokhberian, Negar, Lerman, Kristina
Recent advances in NLP have improved our ability to understand the nuanced worldviews of online communities. Existing research focused on probing ideological stances treats liberals and conservatives as separate groups. However, this fails to account for the nuanced views of the organically formed online communities and the connections between them. In this paper, we study discussions of the 2020 U.S. election on Twitter to identify complex interacting communities. Capitalizing on this interconnectedness, we introduce a novel approach that harnesses message passing when finetuning language models (LMs) to probe the nuanced ideologies of these communities. By comparing the responses generated by LMs and real-world survey results, our method shows higher alignment than existing baselines, highlighting the potential of using LMs in revealing complex ideologies within and across interconnected mixed-ideology communities.
Characterizing Online Eating Disorder Communities with Large Language Models
Chu, Minh Duc, Karnati, Aryan, He, Zihao, Lerman, Kristina
The rise in eating disorders, a dangerous mental health condition with high mortality and morbidity, has been linked to the proliferation of idealized body images on social media. However, the link between social media and eating disorders is far more complex. We argue that social media platforms create a feedback loop that amplifies the growth of content and communities that promote eating disorders like anorexia and bulimia. Specifically, social media platforms make it easy for vulnerable individuals to find and connect to like-minded others, while group dynamic processes encourage them to stay engaged within communities that promote and glorify harmful behaviors linked to eating disorders. We characterize this dynamic empirically through a combination of network and language analysis. We describe a novel framework that leverages large language models to analyze the discourse within online communities and probe their attitudes on topics related to eating disorders to identify potentially harmful content. Our work emphasizes the need for better social media moderation to disrupt harmful feedback loops and protect vulnerable individuals.
Inducing Political Bias Allows Language Models Anticipate Partisan Reactions to Controversies
He, Zihao, Guo, Siyi, Rao, Ashwin, Lerman, Kristina
Social media platforms are rife with politically charged discussions. Therefore, accurately deciphering and predicting partisan biases using Large Language Models (LLMs) is increasingly critical. In this study, we address the challenge of understanding political bias in digitized discourse using LLMs. While traditional approaches often rely on finetuning separate models for each political faction, our work innovates by employing a singular, instruction-tuned LLM to reflect a spectrum of political ideologies. We present a comprehensive analytical framework, consisting of Partisan Bias Divergence Assessment and Partisan Class Tendency Prediction, to evaluate the model's alignment with real-world political ideologies in terms of stances, emotions, and moral foundations. Our findings reveal the model's effectiveness in capturing emotional and moral nuances, albeit with some challenges in stance detection, highlighting the intricacies and potential for refinement in NLP tools for politically sensitive contexts. This research contributes significantly to the field by demonstrating the feasibility and importance of nuanced political understanding in LLMs, particularly for applications requiring acute awareness of political bias.
ALCAP: Alignment-Augmented Music Captioner
He, Zihao, Hao, Weituo, Lu, Wei-Tsung, Chen, Changyou, Lerman, Kristina, Song, Xuchen
Music captioning has gained significant attention in the wake of the rising prominence of streaming media platforms. Traditional approaches often prioritize either the audio or lyrics aspect of the music, inadvertently ignoring the intricate interplay between the two. However, a comprehensive understanding of music necessitates the integration of both these elements. In this study, we delve into this overlooked realm by introducing a method to systematically learn multimodal alignment between audio and lyrics through contrastive learning. This not only recognizes and emphasizes the synergy between audio and lyrics but also paves the way for models to achieve deeper cross-modal coherence, thereby producing high-quality captions. We provide both theoretical and empirical results demonstrating the advantage of the proposed method, which achieves new state-of-the-art on two music captioning datasets.