Guo, Xu
Adaptive AUV Hunting Policy with Covert Communication via Diffusion Model
Guo, Xu, Hou, Xiangwang, Xu, Minrui, Chen, Jianrui, Wang, Jingjing, Du, Jun, Ren, Yong
Collaborative underwater target hunting, facilitated by multiple autonomous underwater vehicles (AUVs), plays a significant role in various domains, especially military missions. Existing research predominantly focuses on designing efficient and high-success-rate hunting policy, particularly addressing the target's evasion capabilities. However, in real-world scenarios, the target can not only adjust its evasion policy based on its observations and predictions but also possess eavesdropping capabilities. If communication among hunter AUVs, such as hunting policy exchanges, is intercepted by the target, it can adapt its escape policy accordingly, significantly reducing the success rate of the hunting mission. To address this challenge, we propose a covert communication-guaranteed collaborative target hunting framework, which ensures efficient hunting in complex underwater environments while defending against the target's eavesdropping. To the best of our knowledge, this is the first study to incorporate the confidentiality of inter-agent communication into the design of target hunting policy. Furthermore, given the complexity of coordinating multiple AUVs in dynamic and unpredictable environments, we propose an adaptive multi-agent diffusion policy (AMADP), which incorporates the strong generative ability of diffusion models into the multi-agent reinforcement learning (MARL) algorithm. Experimental results demonstrate that AMADP achieves faster convergence and higher hunting success rates while maintaining covertness constraints.
SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
Xu, Yige, Guo, Xu, Zeng, Zhiwei, Miao, Chunyan
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks by generating intermediate reasoning steps. However, most existing approaches focus on hard token decoding, which constrains reasoning within the discrete vocabulary space and may not always be optimal. While recent efforts explore continuous-space reasoning, they often suffer from catastrophic forgetting, limiting their applicability to state-of-the-art LLMs that already perform well in zero-shot settings with a proper instruction. To address this challenge, we propose a novel approach for continuous-space reasoning that does not require modifying the underlying LLM. Specifically, we employ a lightweight assistant model to generate instance-specific soft thought tokens speculatively as the initial chain of thoughts, which are then mapped into the LLM's representation space via a projection module. Experimental results on five reasoning benchmarks demonstrate that our method enhances LLM reasoning performance through supervised, parameter-efficient fine-tuning.
Generating Synthetic Datasets for Few-shot Prompt Tuning
Guo, Xu, Du, Zilin, Li, Boyang, Miao, Chunyan
A major limitation of prompt tuning is its dependence on large labeled training datasets. Under few-shot learning settings, prompt tuning lags far behind full-model fine-tuning, limiting its scope of application. In this paper, we leverage the powerful LLMs to synthesize task-specific labeled data for training the soft prompts. We first introduce a distribution-aligned weighted generator tuning (DawGen) method to encourage generating in-distribution data that aligns with the few-shot real data. Then, we train soft prompts on both synthetic and real datasets using a gradient surgery approach, which eliminates the conflicting gradients from different data sources. Experiments on seven sentence-pair classification datasets demonstrate the effectiveness of our proposed method for boosting prompt tuning in few-shot learning settings. Results on QQP, MRPC, and SICK datasets are even comparable to the performance of transfer learning from large real-world datasets, showing the promise of synthetic data as an alternative for enhancing soft prompt tuning.
RevMUX: Data Multiplexing with Reversible Adapters for Efficient LLM Batch Inference
Xu, Yige, Guo, Xu, Zeng, Zhiwei, Miao, Chunyan
Large language models (LLMs) have brought a great breakthrough to the natural language processing (NLP) community, while leading the challenge of handling concurrent customer queries due to their high throughput demands. Data multiplexing addresses this by merging multiple inputs into a single composite input, allowing more efficient inference through a shared forward pass. However, as distinguishing individuals from a composite input is challenging, conventional methods typically require training the entire backbone, yet still suffer from performance degradation. In this paper, we introduce RevMUX, a parameter-efficient data multiplexing framework that incorporates a reversible design in the multiplexer, which can be reused by the demultiplexer to perform reverse operations and restore individual samples for classification. Extensive experiments on four datasets and three types of LLM backbones demonstrate the effectiveness of RevMUX for enhancing LLM inference efficiency while retaining a satisfactory classification performance.
A Survey on Natural Language Counterfactual Generation
Wang, Yongjie, Qiu, Xiaoqi, Yue, Yu, Guo, Xu, Zeng, Zhiwei, Feng, Yuhong, Shen, Zhiqi
Natural Language Counterfactual generation aims to minimally modify a given text such that the modified text will be classified into a different class. The generated counterfactuals provide insight into the reasoning behind a model's predictions by highlighting which words significantly influence the outcomes. Additionally, they can be used to detect model fairness issues or augment the training data to enhance the model's robustness. A substantial amount of research has been conducted to generate counterfactuals for various NLP tasks, employing different models and methodologies. With the rapid growth of studies in this field, a systematic review is crucial to guide future researchers and developers. To bridge this gap, this survey comprehensively overview textual counterfactual generation methods, particularly including those based on Large Language Models. We propose a new taxonomy that categorizes the generation methods into four groups and systematically summarize the metrics for evaluating the generation quality. Finally, we discuss ongoing research challenges and outline promising directions for future work.
PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning
Qiu, Xiaoqi, Wang, Yongjie, Guo, Xu, Zeng, Zhiwei, Yu, Yue, Feng, Yuhong, Miao, Chunyan
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes. Training with CAD enhances model robustness against spurious features that happen to correlate with labels by spreading the casual relationships across different classes. Yet, recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information, inadvertently introducing biases that may impair performance on out-ofdistribution (OOD) datasets. To mitigate this issue, we employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues. We theoretically prove that contrastive loss can encourage models to leverage a broader range of features beyond those modified ones. Comprehensive experiments on two human-edited CAD datasets demonstrate that our proposed method outperforms the state-of-the-art on OOD datasets.
Gradient based Feature Attribution in Explainable AI: A Technical Review
Wang, Yongjie, Zhang, Tong, Guo, Xu, Shen, Zhiqi
The surge in black-box AI models has prompted the need to explain the internal mechanism and justify their reliability, especially in high-stakes applications, such as healthcare and autonomous driving. Due to the lack of a rigorous definition of explainable AI (XAI), a plethora of research related to explainability, interpretability, and transparency has been developed to explain and analyze the model from various perspectives. Consequently, with an exhaustive list of papers, it becomes challenging to have a comprehensive overview of XAI research from all aspects. Considering the popularity of neural networks in AI research, we narrow our focus to a specific area of XAI research: gradient based explanations, which can be directly adopted for neural network models. In this review, we systematically explore gradient based explanation methods to date and introduce a novel taxonomy to categorize them into four distinct classes. Then, we present the essence of technique details in chronological order and underscore the evolution of algorithms. Next, we introduce both human and quantitative evaluations to measure algorithm performance. More importantly, we demonstrate the general challenges in XAI and specific challenges in gradient based explanations. We hope that this survey can help researchers understand state-of-the-art progress and their corresponding disadvantages, which could spark their interest in addressing these issues in future work.
Generative AI for Synthetic Data Generation: Methods, Challenges and the Future
Guo, Xu, Chen, Yiqiang
The recent surge in research focused on generating synthetic data from large language models (LLMs), especially for scenarios with limited data availability, marks a notable shift in Generative Artificial Intelligence (AI). Their ability to perform comparably to real-world data positions this approach as a compelling solution to low-resource challenges. This paper delves into advanced technologies that leverage these gigantic LLMs for the generation of task-specific training data. We outline methodologies, evaluation techniques, and practical applications, discuss the current limitations, and suggest potential pathways for future research.
Training on Synthetic Data Beats Real Data in Multimodal Relation Extraction
Du, Zilin, Li, Haoxin, Guo, Xu, Li, Boyang
The task of multimodal relation extraction has attracted significant research attention, but progress is constrained by the scarcity of available training data. One natural thought is to extend existing datasets with cross-modal generative models. In this paper, we consider a novel problem setting, where only unimodal data, either text or image, are available during training. We aim to train a multimodal classifier from synthetic data that perform well on real multimodal test data. However, training with synthetic data suffers from two obstacles: lack of data diversity and label information loss. To alleviate the issues, we propose Mutual Information-aware Multimodal Iterated Relational dAta GEneration (MI2RAGE), which applies Chained Cross-modal Generation (CCG) to promote diversity in the generated data and exploits a teacher network to select valuable training samples with high mutual information with the ground-truth labels. Comparing our method to direct training on synthetic data, we observed a significant improvement of 24.06% F1 with synthetic text and 26.42% F1 with synthetic images. Notably, our best model trained on completely synthetic images outperforms prior state-of-the-art models trained on real multimodal data by a margin of 3.76% in F1. Our codebase will be made available upon acceptance.