Eltawil, Ahmed M.
Explainable AI-aided Feature Selection and Model Reduction for DRL-based V2X Resource Allocation
Khan, Nasir, Abdallah, Asmaa, Celik, Abdulkadir, Eltawil, Ahmed M., Coleri, Sinem
Artificial intelligence (AI) is expected to significantly enhance radio resource management (RRM) in sixth-generation (6G) networks. However, the lack of explainability in complex deep learning (DL) models poses a challenge for practical implementation. This paper proposes a novel explainable AI (XAI)- based framework for feature selection and model complexity reduction in a model-agnostic manner. Applied to a multi-agent deep reinforcement learning (MADRL) setting, our approach addresses the joint sub-band assignment and power allocation problem in cellular vehicle-to-everything (V2X) communications. We propose a novel two-stage systematic explainability framework leveraging feature relevance-oriented XAI to simplify the DRL agents. While the former stage generates a state feature importance ranking of the trained models using Shapley additive explanations (SHAP)-based importance scores, the latter stage exploits these importance-based rankings to simplify the state space of the agents by removing the least important features from the model input. Simulation results demonstrate that the XAI-assisted methodology achieves 97% of the original MADRL sum-rate performance while reducing optimal state features by 28%, average training time by 11%, and trainable weight parameters by 46% in a network with eight vehicular pairs.
Explainable and Robust Millimeter Wave Beam Alignment for AI-Native 6G Networks
Khan, Nasir, Abdallah, Asmaa, Celik, Abdulkadir, Eltawil, Ahmed M., Coleri, Sinem
Integrated artificial intelligence (AI) and communication has been recognized as a key pillar of 6G and beyond networks. In line with AI-native 6G vision, explainability and robustness in AI-driven systems are critical for establishing trust and ensuring reliable performance in diverse and evolving environments. This paper addresses these challenges by developing a robust and explainable deep learning (DL)-based beam alignment engine (BAE) for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. The proposed convolutional neural network (CNN)-based BAE utilizes received signal strength indicator (RSSI) measurements over a set of wide beams to accurately predict the best narrow beam for each UE, significantly reducing the overhead associated with exhaustive codebook-based narrow beam sweeping for initial access (IA) and data transmission. To ensure transparency and resilience, the Deep k-Nearest Neighbors (DkNN) algorithm is employed to assess the internal representations of the network via nearest neighbor approach, providing human-interpretable explanations and confidence metrics for detecting out-of-distribution inputs. Experimental results demonstrate that the proposed DL-based BAE exhibits robustness to measurement noise, reduces beam training overhead by 75% compared to the exhaustive search while maintaining near-optimal performance in terms of spectral efficiency. Moreover, the proposed framework improves outlier detection robustness by up to 5x and offers clearer insights into beam prediction decisions compared to traditional softmax-based classifiers.
Chimera: A Block-Based Neural Architecture Search Framework for Event-Based Object Detection
Silva, Diego A., Elsheikh, Ahmed, Smagulova, Kamilya, Fouda, Mohammed E., Eltawil, Ahmed M.
Event-based cameras are sensors that simulate the human eye, offering advantages such as high-speed robustness and low power consumption. Established Deep Learning techniques have shown effectiveness in processing event data. Chimera is a Block-Based Neural Architecture Search (NAS) framework specifically designed for Event-Based Object Detection, aiming to create a systematic approach for adapting RGB-domain processing methods to the event domain. The Chimera design space is constructed from various macroblocks, including Attention blocks, Convolutions, State Space Models, and MLP-mixer-based architectures, which provide a valuable trade-off between local and global processing capabilities, as well as varying levels of complexity. The results on the PErson Detection in Robotics (PEDRo) dataset demonstrated performance levels comparable to leading state-of-the-art models, alongside an average parameter reduction of 1.6 times.
NetOrchLLM: Mastering Wireless Network Orchestration with Large Language Models
Abdallah, Asmaa, Albaseer, Abdullatif, Celik, Abdulkadir, Abdallah, Mohamed, Eltawil, Ahmed M.
The transition to 6G networks promises unprecedented advancements in wireless communication, with increased data rates, ultra-low latency, and enhanced capacity. However, the complexity of managing and optimizing these next-generation networks presents significant challenges. The advent of large language models (LLMs) has revolutionized various domains by leveraging their sophisticated natural language understanding capabilities. However, the practical application of LLMs in wireless network orchestration and management remains largely unexplored. Existing literature predominantly offers visionary perspectives without concrete implementations, leaving a significant gap in the field. To address this gap, this paper presents NETORCHLLM, a wireless NETwork ORCHestrator LLM framework that uses LLMs to seamlessly orchestrate diverse wireless-specific models from wireless communication communities using their language understanding and generation capabilities. A comprehensive framework is introduced, demonstrating the practical viability of our approach and showcasing how LLMs can be effectively harnessed to optimize dense network operations, manage dynamic environments, and improve overall network performance. NETORCHLLM bridges the theoretical aspirations of prior research with practical, actionable solutions, paving the way for future advancements in integrating generative AI technologies within the wireless communications sector.
BF-IMNA: A Bit Fluid In-Memory Neural Architecture for Neural Network Acceleration
Rakka, Mariam, Karami, Rachid, Eltawil, Ahmed M., Fouda, Mohammed E., Kurdahi, Fadi
Mixed-precision quantization works Neural Networks (NNs) are gaining traction for their efficient realization on the hardware leading to higher throughput and lower energy. In-Memory Computing (IMC) accelerator architectures are offered as alternatives to traditional architectures relying on a data-centric computational paradigm, diminishing the memory wall problem, and scoring high throughput and energy efficiency. These accelerators can support static fixed-precision but are not flexible to support mixed-precision NNs. In this paper, we present BF-IMNA, a bit fluid IMC accelerator for end-to-end Convolutional NN (CNN) inference that is capable of static and dynamic mixed-precision without any hardware reconfiguration overhead at run-time. At the heart of BF-IMNA are Associative Processors (APs), which are bit-serial word-parallel Single Instruction, Multiple Data (SIMD)-like engines. We report the performance of end-to-end inference of ImageNet on AlexNet, VGG16, and ResNet50 on BF-IMNA for different technologies (eNVM and NVM), mixed-precision configurations, and supply voltages. To demonstrate bit fluidity, we implement HAWQ-V3's per-layer mixed-precision configurations for ResNet18 on BF-IMNA using different latency budgets, and results reveal a trade-off between accuracy and Energy-Delay Product (EDP): On one hand, mixed-precision with a high latency constraint achieves the closest accuracy to fixed-precision INT8 and reports a high (worse) EDP compared to fixed-precision INT4. On the other hand, with a low latency constraint, BF-IMNA reports the closest EDP to fixed-precision INT4, with a higher degradation in accuracy compared to fixed-precision INT8. We also show that BF-IMNA with fixed-precision configuration still delivers performance that is comparable to current state-of-the-art accelerators: BF-IMNA achieves $20\%$ higher energy efficiency and $2\%$ higher throughput.
ENWAR: A RAG-empowered Multi-Modal LLM Framework for Wireless Environment Perception
Nazar, Ahmad M., Celik, Abdulkadir, Selim, Mohamed Y., Abdallah, Asmaa, Qiao, Daji, Eltawil, Ahmed M.
Large language models (LLMs) hold significant promise in advancing network management and orchestration in 6G and beyond networks. However, existing LLMs are limited in domain-specific knowledge and their ability to handle multi-modal sensory data, which is critical for real-time situational awareness in dynamic wireless environments. This paper addresses this gap by introducing ENWAR, an ENvironment-aWARe retrieval augmented generation-empowered multi-modal LLM framework. ENWAR seamlessly integrates multi-modal sensory inputs to perceive, interpret, and cognitively process complex wireless environments to provide human-interpretable situational awareness. ENWAR is evaluated on the GPS, LiDAR, and camera modality combinations of DeepSense6G dataset with state-of-the-art LLMs such as Mistral-7b/8x7b and LLaMa3.1-8/70/405b. Compared to general and often superficial environmental descriptions of these vanilla LLMs, ENWAR delivers richer spatial analysis, accurately identifies positions, analyzes obstacles, and assesses line-of-sight between vehicles. Results show that ENWAR achieves key performance indicators of up to 70% relevancy, 55% context recall, 80% correctness, and 86% faithfulness, demonstrating its efficacy in multi-modal perception and interpretation.
At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers in 6G Wireless Intelligence
Celik, Abdulkadir, Eltawil, Ahmed M.
The majority of data-driven wireless research leans heavily on discriminative AI (DAI) that requires vast real-world datasets. Unlike the DAI, Generative AI (GenAI) pertains to generative models (GMs) capable of discerning the underlying data distribution, patterns, and features of the input data. This makes GenAI a crucial asset in wireless domain wherein real-world data is often scarce, incomplete, costly to acquire, and hard to model or comprehend. With these appealing attributes, GenAI can replace or supplement DAI methods in various capacities. Accordingly, this combined tutorial-survey paper commences with preliminaries of 6G and wireless intelligence by outlining candidate 6G applications and services, presenting a taxonomy of state-of-the-art DAI models, exemplifying prominent DAI use cases, and elucidating the multifaceted ways through which GenAI enhances DAI. Subsequently, we present a tutorial on GMs by spotlighting seminal examples such as generative adversarial networks, variational autoencoders, flow-based GMs, diffusion-based GMs, generative transformers, large language models, to name a few. Contrary to the prevailing belief that GenAI is a nascent trend, our exhaustive review of approximately 120 technical papers demonstrates the scope of research across core wireless research areas, including physical layer design; network optimization, organization, and management; network traffic analytics; cross-layer network security; and localization & positioning. Furthermore, we outline the central role of GMs in pioneering areas of 6G network research, including semantic/THz/near-field communications, ISAC, extremely large antenna arrays, digital twins, AI-generated content services, mobile edge computing and edge AI, adversarial ML, and trustworthy AI. Lastly, we shed light on the multifarious challenges ahead, suggesting potential strategies and promising remedies.