Goto

Collaborating Authors

 Du, Jin-Hong


Assumption-Lean Post-Integrated Inference with Negative Control Outcomes

arXiv.org Machine Learning

In the big data era, integrating information from multiple heterogeneous sources has become increasingly crucial for achieving larger sample sizes and more diverse study populations. The applications of data integration are in a variety of fields, including but not limited to, causal inference on heterogeneous populations (Shi et al., 2023), survey sampling (Yang et al., 2020), health policy (Paddock et al., 2024), retrospective psychometrics (Howe and Brown, 2023), and multi-omics biological science (Du et al., 2022). Data integration methods have been proposed to mitigate the unwanted effects of heterogeneous datasets and unmeasured covariates, recovering the common variation across datasets. However, a critical and often overlooked question is whether reliable statistical inference can be made from integrated data. Directly performing statistical inference on integrated outcomes and covariates of interests fails to account for the complex correlation structures introduced by the data integration process, often leading to improper analyses that incorrectly assume the corrected data points are independent (Li et al., 2023). While data integration is broadly utilized in various fields, our paper focuses on a challenging scenario with the presence of high-dimensional outcomes.


Precise Asymptotics of Bagging Regularized M-estimators

arXiv.org Machine Learning

We characterize the squared prediction risk of ensemble estimators obtained through subagging (subsample bootstrap aggregating) regularized M-estimators and construct a consistent estimator for the risk. Specifically, we consider a heterogeneous collection of $M \ge 1$ regularized M-estimators, each trained with (possibly different) subsample sizes, convex differentiable losses, and convex regularizers. We operate under the proportional asymptotics regime, where the sample size $n$, feature size $p$, and subsample sizes $k_m$ for $m \in [M]$ all diverge with fixed limiting ratios $n/p$ and $k_m/n$. Key to our analysis is a new result on the joint asymptotic behavior of correlations between the estimator and residual errors on overlapping subsamples, governed through a (provably) contractible nonlinear system of equations. Of independent interest, we also establish convergence of trace functionals related to degrees of freedom in the non-ensemble setting (with $M = 1$) along the way, extending previously known cases for square loss and ridge, lasso regularizers. When specialized to homogeneous ensembles trained with a common loss, regularizer, and subsample size, the risk characterization sheds some light on the implicit regularization effect due to the ensemble and subsample sizes $(M,k)$. For any ensemble size $M$, optimally tuning subsample size yields sample-wise monotonic risk. For the full-ensemble estimator (when $M \to \infty$), the optimal subsample size $k^\star$ tends to be in the overparameterized regime $(k^\star \le \min\{n,p\})$, when explicit regularization is vanishing. Finally, joint optimization of subsample size, ensemble size, and regularization can significantly outperform regularizer optimization alone on the full data (without any subagging).


Revisiting Optimism and Model Complexity in the Wake of Overparameterized Machine Learning

arXiv.org Machine Learning

Common practice in modern machine learning involves fitting a large number of parameters relative to the number of observations. These overparameterized models can exhibit surprising generalization behavior, e.g., ``double descent'' in the prediction error curve when plotted against the raw number of model parameters, or another simplistic notion of complexity. In this paper, we revisit model complexity from first principles, by first reinterpreting and then extending the classical statistical concept of (effective) degrees of freedom. Whereas the classical definition is connected to fixed-X prediction error (in which prediction error is defined by averaging over the same, nonrandom covariate points as those used during training), our extension of degrees of freedom is connected to random-X prediction error (in which prediction error is averaged over a new, random sample from the covariate distribution). The random-X setting more naturally embodies modern machine learning problems, where highly complex models, even those complex enough to interpolate the training data, can still lead to desirable generalization performance under appropriate conditions. We demonstrate the utility of our proposed complexity measures through a mix of conceptual arguments, theory, and experiments, and illustrate how they can be used to interpret and compare arbitrary prediction models.


Network-based Neighborhood regression

arXiv.org Machine Learning

Given the ubiquity of modularity in biological systems, module-level regulation analysis is vital for understanding biological systems across various levels and their dynamics. Current statistical analysis on biological modules predominantly focuses on either detecting the functional modules in biological networks or sub-group regression on the biological features without using the network data. This paper proposes a novel network-based neighborhood regression framework whose regression functions depend on both the global community-level information and local connectivity structures among entities. An efficient community-wise least square optimization approach is developed to uncover the strength of regulation among the network modules while enabling asymptotic inference. With random graph theory, we derive non-asymptotic estimation error bounds for the proposed estimator, achieving exact minimax optimality. Unlike the root-n consistency typical in canonical linear regression, our model exhibits linear consistency in the number of nodes n, highlighting the advantage of incorporating neighborhood information. The effectiveness of the proposed framework is further supported by extensive numerical experiments. Application to whole-exome sequencing and RNA-sequencing Autism datasets demonstrates the usage of the proposed method in identifying the association between the gene modules of genetic variations and the gene modules of genomic differential expressions.


Causal Inference for Genomic Data with Multiple Heterogeneous Outcomes

arXiv.org Machine Learning

With the evolution of single-cell RNA sequencing techniques into a standard approach in genomics, it has become possible to conduct cohort-level causal inferences based on single-cell-level measurements. However, the individual gene expression levels of interest are not directly observable; instead, only repeated proxy measurements from each individual's cells are available, providing a derived outcome to estimate the underlying outcome for each of many genes. In this paper, we propose a generic semiparametric inference framework for doubly robust estimation with multiple derived outcomes, which also encompasses the usual setting of multiple outcomes when the response of each unit is available. To reliably quantify the causal effects of heterogeneous outcomes, we specialize the analysis to standardized average treatment effects and quantile treatment effects. Through this, we demonstrate the use of the semiparametric inferential results for doubly robust estimators derived from both Von Mises expansions and estimating equations. A multiple testing procedure based on Gaussian multiplier bootstrap is tailored for doubly robust estimators to control the false discovery exceedance rate. Applications in single-cell CRISPR perturbation analysis and individual-level differential expression analysis demonstrate the utility of the proposed methods and offer insights into the usage of different estimands for causal inference in genomics.


Optimal Ridge Regularization for Out-of-Distribution Prediction

arXiv.org Machine Learning

We study the behavior of optimal ridge regularization and optimal ridge risk for out-of-distribution prediction, where the test distribution deviates arbitrarily from the train distribution. We establish general conditions that determine the sign of the optimal regularization level under covariate and regression shifts. These conditions capture the alignment between the covariance and signal structures in the train and test data and reveal stark differences compared to the in-distribution setting. For example, a negative regularization level can be optimal under covariate shift or regression shift, even when the training features are isotropic or the design is underparameterized. Furthermore, we prove that the optimally-tuned risk is monotonic in the data aspect ratio, even in the out-of-distribution setting and when optimizing over negative regularization levels. In general, our results do not make any modeling assumptions for the train or the test distributions, except for moment bounds, and allow for arbitrary shifts and the widest possible range of (negative) regularization levels.


Extrapolated cross-validation for randomized ensembles

arXiv.org Machine Learning

Ensemble methods such as bagging and random forests are ubiquitous in various fields, from finance to genomics. Despite their prevalence, the question of the efficient tuning of ensemble parameters has received relatively little attention. This paper introduces a cross-validation method, ECV (Extrapolated Cross-Validation), for tuning the ensemble and subsample sizes in randomized ensembles. Our method builds on two primary ingredients: initial estimators for small ensemble sizes using out-of-bag errors and a novel risk extrapolation technique that leverages the structure of prediction risk decomposition. By establishing uniform consistency of our risk extrapolation technique over ensemble and subsample sizes, we show that ECV yields $\delta$-optimal (with respect to the oracle-tuned risk) ensembles for squared prediction risk. Our theory accommodates general ensemble predictors, only requires mild moment assumptions, and allows for high-dimensional regimes where the feature dimension grows with the sample size. As a practical case study, we employ ECV to predict surface protein abundances from gene expressions in single-cell multiomics using random forests. In comparison to sample-split cross-validation and $K$-fold cross-validation, ECV achieves higher accuracy avoiding sample splitting. At the same time, its computational cost is considerably lower owing to the use of the risk extrapolation technique. Additional numerical results validate the finite-sample accuracy of ECV for several common ensemble predictors under a computational constraint on the maximum ensemble size.


Bagging in overparameterized learning: Risk characterization and risk monotonization

arXiv.org Machine Learning

Bagging is a commonly used ensemble technique in statistics and machine learning to improve the performance of prediction procedures. In this paper, we study the prediction risk of variants of bagged predictors under the proportional asymptotics regime, in which the ratio of the number of features to the number of observations converges to a constant. Specifically, we propose a general strategy to analyze the prediction risk under squared error loss of bagged predictors using classical results on simple random sampling. Specializing the strategy, we derive the exact asymptotic risk of the bagged ridge and ridgeless predictors with an arbitrary number of bags under a well-specified linear model with arbitrary feature covariance matrices and signal vectors. Furthermore, we prescribe a generic cross-validation procedure to select the optimal subsample size for bagging and discuss its utility to eliminate the non-monotonic behavior of the limiting risk in the sample size (i.e., double or multiple descents). In demonstrating the proposed procedure for bagged ridge and ridgeless predictors, we thoroughly investigate the oracle properties of the optimal subsample size and provide an in-depth comparison between different bagging variants.


Generalized equivalences between subsampling and ridge regularization

arXiv.org Machine Learning

We establish precise structural and risk equivalences between subsampling and ridge regularization for ensemble ridge estimators. Specifically, we prove that linear and quadratic functionals of subsample ridge estimators, when fitted with different ridge regularization levels $\lambda$ and subsample aspect ratios $\psi$, are asymptotically equivalent along specific paths in the $(\lambda,\psi)$-plane (where $\psi$ is the ratio of the feature dimension to the subsample size). Our results only require bounded moment assumptions on feature and response distributions and allow for arbitrary joint distributions. Furthermore, we provide a data-dependent method to determine the equivalent paths of $(\lambda,\psi)$. An indirect implication of our equivalences is that optimally tuned ridge regression exhibits a monotonic prediction risk in the data aspect ratio. This resolves a recent open problem raised by Nakkiran et al. for general data distributions under proportional asymptotics, assuming a mild regularity condition that maintains regression hardness through linearized signal-to-noise ratios.


Corrected generalized cross-validation for finite ensembles of penalized estimators

arXiv.org Machine Learning

Generalized cross-validation (GCV) is a widely-used method for estimating the squared out-of-sample prediction risk that employs a scalar degrees of freedom adjustment (in a multiplicative sense) to the squared training error. In this paper, we examine the consistency of GCV for estimating the prediction risk of arbitrary ensembles of penalized least squares estimators. We show that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this shortcoming, we identify a correction that involves an additional scalar correction (in an additive sense) based on degrees of freedom adjusted training errors from each ensemble component. The proposed estimator (termed CGCV) maintains the computational advantages of GCV and requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator stems from a finer inspection of ensemble risk decomposition and two intermediate risk estimators for the components in this decomposition. We provide a non-asymptotic analysis of the CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators under Gaussian features and a linear response model. In the special case of ridge regression, we extend the analysis to general feature and response distributions using random matrix theory, which establishes model-free uniform consistency of CGCV.