Goto

Collaborating Authors

 Diggavi, Suhas


Transformers learn variable-order Markov chains in-context

arXiv.org Artificial Intelligence

Large language models have demonstrated impressive in-context learning (ICL) capability. However, it is still unclear how the underlying transformers accomplish it, especially in more complex scenarios. Toward this goal, several recent works studied how transformers learn fixed-order Markov chains (FOMC) in context, yet natural languages are more suitably modeled by variable-order Markov chains (VOMC), i.e., context trees (CTs). In this work, we study the ICL of VOMC by viewing language modeling as a form of data compression and focus on small alphabets and low-order VOMCs. This perspective allows us to leverage mature compression algorithms, such as context-tree weighting (CTW) and prediction by partial matching (PPM) algorithms as baselines, the former of which is Bayesian optimal for a class of CTW priors. We empirically observe a few phenomena: 1) Transformers can indeed learn to compress VOMC in-context, while PPM suffers significantly; 2) The performance of transformers is not very sensitive to the number of layers, and even a two-layer transformer can learn in-context quite well; and 3) Transformers trained and tested on non-CTW priors can significantly outperform the CTW algorithm. To explain these phenomena, we analyze the attention map of the transformers and extract two mechanisms, on which we provide two transformer constructions: 1) A construction with $D+2$ layers that can mimic the CTW algorithm accurately for CTs of maximum order $D$, 2) A 2-layer transformer that utilizes the feed-forward network for probability blending. One distinction from the FOMC setting is that a counting mechanism appears to play an important role. We implement these synthetic transformer layers and show that such hybrid transformers can match the ICL performance of transformers, and more interestingly, some of them can perform even better despite the much-reduced parameter sets.


On the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study

arXiv.org Artificial Intelligence

This paper demonstrates the potential of vibration-based Foundation Models (FMs), pre-trained with unlabeled sensing data, to improve the robustness of run-time inference in (a class of) IoT applications. A case study is presented featuring a vehicle classification application using acoustic and seismic sensing. The work is motivated by the success of foundation models in the areas of natural language processing and computer vision, leading to generalizations of the FM concept to other domains as well, where significant amounts of unlabeled data exist that can be used for self-supervised pre-training. One such domain is IoT applications. Foundation models for selected sensing modalities in the IoT domain can be pre-trained in an environment-agnostic fashion using available unlabeled sensor data and then fine-tuned to the deployment at hand using a small amount of labeled data. The paper shows that the pre-training/fine-tuning approach improves the robustness of downstream inference and facilitates adaptation to different environmental conditions. More specifically, we present a case study in a real-world setting to evaluate a simple (vibration-based) FM-like model, called FOCAL, demonstrating its superior robustness and adaptation, compared to conventional supervised deep neural networks (DNNs). We also demonstrate its superior convergence over supervised solutions. Our findings highlight the advantages of vibration-based FMs (and FM-inspired selfsupervised models in general) in terms of inference robustness, runtime efficiency, and model adaptation (via fine-tuning) in resource-limited IoT settings.


Hierarchical Bayes Approach to Personalized Federated Unsupervised Learning

arXiv.org Artificial Intelligence

Statistical heterogeneity of clients' local data is an important characteristic in federated learning, motivating personalized algorithms tailored to the local data statistics. Though there has been a plethora of algorithms proposed for personalized supervised learning, discovering the structure of local data through personalized unsupervised learning is less explored. We initiate a systematic study of such personalized unsupervised learning by developing algorithms based on optimization criteria inspired by a hierarchical Bayesian statistical framework. We develop adaptive algorithms that discover the balance between using limited local data and collaborative information. We do this in the context of two unsupervised learning tasks: personalized dimensionality reduction and personalized diffusion models. We develop convergence analyses for our adaptive algorithms which illustrate the dependence on problem parameters (e.g., heterogeneity, local sample size). We also develop a theoretical framework for personalized diffusion models, which shows the benefits of collaboration even under heterogeneity. We finally evaluate our proposed algorithms using synthetic and real data, demonstrating the effective sample amplification for personalized tasks, induced through collaboration, despite data heterogeneity.


FOCAL: Contrastive Learning for Multimodal Time-Series Sensing Signals in Factorized Orthogonal Latent Space

arXiv.org Artificial Intelligence

This paper proposes a novel contrastive learning framework, called FOCAL, for extracting comprehensive features from multimodal time-series sensing signals through self-supervised training. Existing multimodal contrastive frameworks mostly rely on the shared information between sensory modalities, but do not explicitly consider the exclusive modality information that could be critical to understanding the underlying sensing physics. Besides, contrastive frameworks for time series have not handled the temporal information locality appropriately. FOCAL solves these challenges by making the following contributions: First, given multimodal time series, it encodes each modality into a factorized latent space consisting of shared features and private features that are orthogonal to each other. The shared space emphasizes feature patterns consistent across sensory modalities through a modal-matching objective. In contrast, the private space extracts modality-exclusive information through a transformation-invariant objective. Second, we propose a temporal structural constraint for modality features, such that the average distance between temporally neighboring samples is no larger than that of temporally distant samples. Extensive evaluations are performed on four multimodal sensing datasets with two backbone encoders and two classifiers to demonstrate the superiority of FOCAL. It consistently outperforms the state-of-the-art baselines in downstream tasks with a clear margin, under different ratios of available labels. The code and self-collected dataset are available at https://github.com/tomoyoshki/focal.


Representation Transfer Learning via Multiple Pre-trained models for Linear Regression

arXiv.org Artificial Intelligence

In this paper, we consider the problem of learning a linear regression model on a data domain of interest (target) given few samples. To aid learning, we are provided with a set of pre-trained regression models that are trained on potentially different data domains (sources). Assuming a representation structure for the data generating linear models at the sources and the target domains, we propose a representation transfer based learning method for constructing the target model. The proposed scheme is comprised of two phases: (i) utilizing the different source representations to construct a representation that is adapted to the target data, and (ii) using the obtained model as an initialization to a fine-tuning procedure that re-trains the entire (over-parameterized) regression model on the target data. For each phase of the training method, we provide excess risk bounds for the learned model compared to the true data generating target model. The derived bounds show a gain in sample complexity for our proposed method compared to the baseline method of not leveraging source representations when achieving the same excess risk, therefore, theoretically demonstrating the effectiveness of transfer learning for linear regression.


Multi-Message Shuffled Privacy in Federated Learning

arXiv.org Artificial Intelligence

We study differentially private distributed optimization under communication constraints. A server using SGD for optimization aggregates the client-side local gradients for model updates using distributed mean estimation (DME). We develop a communication-efficient private DME, using the recently developed multi-message shuffled (MMS) privacy framework. We analyze our proposed DME scheme to show that it achieves the order-optimal privacy-communication-performance tradeoff resolving an open question in [1], whether the shuffled models can improve the tradeoff obtained in Secure Aggregation. This also resolves an open question on the optimal trade-off for private vector sum in the MMS model. We achieve it through a novel privacy mechanism that non-uniformly allocates privacy at different resolutions of the local gradient vectors. These results are directly applied to give guarantees on private distributed learning algorithms using this for private gradient aggregation iteratively. We also numerically evaluate the private DME algorithms.


A Generative Framework for Personalized Learning and Estimation: Theory, Algorithms, and Privacy

arXiv.org Machine Learning

A distinguishing characteristic of federated learning is that the (local) client data could have statistical heterogeneity. This heterogeneity has motivated the design of personalized learning, where individual (personalized) models are trained, through collaboration. There have been various personalization methods proposed in literature, with seemingly very different forms and methods ranging from use of a single global model for local regularization and model interpolation, to use of multiple global models for personalized clustering, etc. In this work, we begin with a generative framework that could potentially unify several different algorithms as well as suggest new algorithms. We apply our generative framework to personalized estimation, and connect it to the classical empirical Bayes' methodology. We develop private personalized estimation under this framework. We then use our generative framework for learning, which unifies several known personalized FL algorithms and also suggests new ones; we propose and study a new algorithm AdaPeD based on a Knowledge Distillation, which numerically outperforms several known algorithms. We also develop privacy for personalized learning methods with guarantees for user-level privacy and composition. We numerically evaluate the performance as well as the privacy for both the estimation and learning problems, demonstrating the advantages of our proposed methods.


Shuffled Model of Federated Learning: Privacy, Communication and Accuracy Trade-offs

arXiv.org Machine Learning

We consider a distributed empirical risk minimization (ERM) optimization problem with communication efficiency and privacy requirements, motivated by the federated learning (FL) framework. Unique challenges to the traditional ERM problem in the context of FL include (i) need to provide privacy guarantees on clients' data, (ii) compress the communication between clients and the server, since clients might have low-bandwidth links, (iii) work with a dynamic client population at each round of communication between the server and the clients, as a small fraction of clients are sampled at each round. To address these challenges we develop (optimal) communication-efficient schemes for private mean estimation for several $\ell_p$ spaces, enabling efficient gradient aggregation for each iteration of the optimization solution of the ERM. We also provide lower and upper bounds for mean estimation with privacy and communication constraints for arbitrary $\ell_p$ spaces. To get the overall communication, privacy, and optimization performance operation point, we combine this with privacy amplification opportunities inherent to this setup. Our solution takes advantage of the inherent privacy amplification provided by client sampling and data sampling at each client (through Stochastic Gradient Descent) as well as the recently developed privacy framework using anonymization, which effectively presents to the server responses that are randomly shuffled with respect to the clients. Putting these together, we demonstrate that one can get the same privacy, optimization-performance operating point developed in recent methods that use full-precision communication, but at a much lower communication cost, i.e., effectively getting communication efficiency for "free".


Byzantine-Resilient High-Dimensional Federated Learning

arXiv.org Machine Learning

We study stochastic gradient descent (SGD) with local iterations in the presence of malicious/Byzantine clients, motivated by the federated learning. The clients, instead of communicating with the central server in every iteration, maintain their local models, which they update by taking several SGD iterations based on their own datasets and then communicate the net update with the server, thereby achieving communication-efficiency. Furthermore, only a subset of clients communicate with the server, and this subset may be different at different synchronization times. The Byzantine clients may collaborate and send arbitrary vectors to the server to disrupt the learning process. To combat the adversary, we employ an efficient high-dimensional robust mean estimation algorithm from Steinhardt et al.~\cite[ITCS 2018]{Resilience_SCV18} at the server to filter-out corrupt vectors; and to analyze the outlier-filtering procedure, we develop a novel matrix concentration result that may be of independent interest. We provide convergence analyses for strongly-convex and non-convex smooth objectives in the heterogeneous data setting, where different clients may have different local datasets, and we do not make any probabilistic assumptions on data generation. We believe that ours is the first Byzantine-resilient algorithm and analysis with local iterations. We derive our convergence results under minimal assumptions of bounded variance for SGD and bounded gradient dissimilarity (which captures heterogeneity among local datasets). We also extend our results to the case when clients compute full-batch gradients.


SQuARM-SGD: Communication-Efficient Momentum SGD for Decentralized Optimization

arXiv.org Machine Learning

In this paper, we study communication-efficient decentralized training of large-scale machine learning models over a network. We propose and analyze SQuARM-SGD, a decentralized training algorithm, employing momentum and compressed communication between nodes regulated by a locally computable triggering rule. In SQuARM-SGD, each node performs a fixed number of local SGD (stochastic gradient descent) steps using Nesterov's momentum and then sends sparisified and quantized updates to its neighbors only when there is a significant change in its model parameters since the last time communication occurred. We provide convergence guarantees of our algorithm for strongly-convex and non-convex smooth objectives. We believe that ours is the first theoretical analysis for compressed decentralized SGD with momentum updates. We show that SQuARM-SGD converges at rate $\mathcal{O}\left(\frac{1}{nT}\right)$ for strongly-convex objectives, while for non-convex objectives it converges at rate $\mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$, thus matching the convergence rate of \emph{vanilla} distributed SGD in both these settings. We corroborate our theoretical understanding with experiments and compare the performance of our algorithm with the state-of-the-art, showing that without sacrificing much on the accuracy, SQuARM-SGD converges at a similar rate while saving significantly in total communicated bits.