Goto

Collaborating Authors

 Cohan, Arman


P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains

arXiv.org Artificial Intelligence

Existing methods on understanding the capabilities of LLMs in logical reasoning rely on binary entailment classification or synthetically derived rationales, which are not sufficient for proper investigation of model's capabilities. We present P-FOLIO, a human-annotated dataset consisting of diverse and complex reasoning chains for a set of realistic logical reasoning stories also written by humans. P-FOLIO is collected with an annotation protocol that facilitates humans to annotate well-structured natural language proofs for first-order logic reasoning problems in a step-by-step manner. The number of reasoning steps in P-FOLIO span from 0 to 20. We further use P-FOLIO to evaluate and improve large-language-model (LLM) reasoning capabilities. We evaluate LLM reasoning capabilities at a fine granularity via single-step inference rule classification, with more diverse inference rules of more diverse and higher levels of complexities than previous works. Given that a single model-generated reasoning chain could take a completely different path than the human-annotated one, we sample multiple reasoning chains from a model and use pass@k metrics for evaluating the quality of model-generated reasoning chains. We show that human-written reasoning chains significantly boost the logical reasoning capabilities of LLMs via many-shot prompting and fine-tuning. Furthermore, fine-tuning Llama3-7B on P-FOLIO improves the model performance by 10% or more on three other out-of-domain logical reasoning datasets. We also conduct detailed analysis to show where most powerful LLMs fall short in reasoning. We will release the dataset and code publicly.


ReIFE: Re-evaluating Instruction-Following Evaluation

arXiv.org Artificial Intelligence

The automatic evaluation of instruction following typically involves using large language models (LLMs) to assess response quality. However, there is a lack of comprehensive evaluation of these LLM-based evaluators across two dimensions: the base LLMs and the evaluation protocols. Therefore, we present a thorough meta-evaluation of instruction following, including 25 base LLMs and 15 recently proposed evaluation protocols, on 4 human-annotated datasets, assessing the evaluation accuracy of the LLM-evaluators. Our evaluation allows us to identify the best-performing base LLMs and evaluation protocols with a high degree of robustness. Moreover, our large-scale evaluation reveals: (1) Base LLM performance ranking remains largely consistent across evaluation protocols, with less capable LLMs showing greater improvement from protocol enhancements; (2) Robust evaluation of evaluation protocols requires many base LLMs with varying capability levels, as protocol effectiveness can depend on the base LLM used; (3) Evaluation results on different datasets are not always consistent, so a rigorous evaluation requires multiple datasets with distinctive features. We release our meta-evaluation suite ReIFE, which provides the codebase and evaluation result collection for more than 500 LLM-evaluator configurations, to support future research in instruction-following evaluation.


Understanding Reference Policies in Direct Preference Optimization

arXiv.org Artificial Intelligence

Direct Preference Optimization (DPO) has become a widely used training method for the instruction fine-tuning of large language models (LLMs). In this work, we explore an under-investigated aspect of DPO - its dependency on the reference model or policy. Such reference policies, typically instantiated as the model to be further fine-tuned, are important since they can impose an upper limit on DPO's effectiveness. Therefore, we address three related research questions in this work. First, we explore the optimal strength of the KL-divergence constraint in DPO, which penalizes deviations from the reference policy, and find that DPO is sensitive to this strength. Next, we examine the necessity of reference policies for instruction fine-tuning by providing both theoretical and empirical comparisons between DPO and related learning objectives, demonstrating DPO's superiority. Additionally, we investigate whether DPO benefits from stronger reference policies, finding that a stronger reference policy can lead to improved performance, but only when it is similar to the model being fine-tuned. Our findings highlight the confounding role of reference policies in DPO and offer insights for best practices, while also identifying open research questions for future studies.


Step-Back Profiling: Distilling User History for Personalized Scientific Writing

arXiv.org Artificial Intelligence

Large language models (LLM) excel at a variety of natural language processing tasks, yet they struggle to generate personalized content for individuals, particularly in real-world scenarios like scientific writing. Addressing this challenge, we introduce STEP-BACK PROFILING to personalize LLMs by distilling user history into concise profiles, including essential traits and preferences of users. To conduct the experiments, we construct a Personalized Scientific Writing (PSW) dataset to study multi-user personalization. PSW requires the models to write scientific papers given specialized author groups with diverse academic backgrounds. As for the results, we demonstrate the effectiveness of capturing user characteristics via STEP-BACK PROFILING for collaborative writing. Moreover, our approach outperforms the baselines by up to 3.6 points on the general personalization benchmark (LaMP), including 7 personalization LLM tasks. Our ablation studies validate the contributions of different components in our method and provide insights into our task definition. Our dataset and code are available at \url{https://github.com/gersteinlab/step-back-profiling}.


SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature

arXiv.org Artificial Intelligence

We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks covering five essential scientific literature understanding capabilities: information extraction, summarization, question answering, claim verification, and classification. SciRIFF demonstrations are notable for their long input contexts, detailed task specifications, and complex structured outputs. While instruction-following resources are available in specific domains such as clinical medicine and chemistry, SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields. To demonstrate the utility of SciRIFF, we develop a sample-efficient strategy to adapt a general instruction-following model for science by performing additional finetuning on a mix of general-domain and SciRIFF demonstrations. In evaluations on nine held-out scientific tasks, our model -- called SciTulu -- improves over a strong LLM baseline by 28.1% and 6.5% at the 7B and 70B scales respectively, while maintaining general instruction-following performance within 2% of the baseline. We are optimistic that SciRIFF will facilitate the development and evaluation of LLMs to help researchers navigate the ever-growing body of scientific literature. We release our dataset, model checkpoints, and data processing and evaluation code to enable further research.


FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions

arXiv.org Artificial Intelligence

Modern Language Models (LMs) are capable of following long and complex instructions that enable a large and diverse set of user requests. While Information Retrieval (IR) models use these LMs as the backbone of their architectures, virtually none of them allow users to provide detailed instructions alongside queries, thus limiting their ability to satisfy complex information needs. In this work, we study the use of instructions in IR systems. First, we introduce our dataset FollowIR, which contains a rigorous instruction evaluation benchmark as well as a training set for helping IR models learn to better follow real-world instructions. FollowIR repurposes detailed instructions -- also known as narratives -- developed for professional assessors to evaluate retrieval systems. In particular, we build our benchmark from three collections curated for shared tasks at the Text REtrieval Conference (TREC). These collections contains hundreds to thousands of labeled documents per query, making them suitable for our exploration. Through this process, we can measure how well IR models follow instructions, through a new pairwise evaluation framework. Our results indicate that existing retrieval models fail to correctly use instructions, using them for basic keywords and struggling to understand long-form information. However, we show that it is possible for IR models to learn to follow complex instructions: our new FollowIR-7B model has significant improvements after fine-tuning on our training set.


NExT: Teaching Large Language Models to Reason about Code Execution

arXiv.org Artificial Intelligence

A fundamental skill among human developers is the ability to understand and reason about program execution. As an example, a programmer can mentally simulate code execution in natural language to debug and repair code (aka. rubber duck debugging). However, large language models (LLMs) of code are typically trained on the surface textual form of programs, thus may lack a semantic understanding of how programs execute at run-time. To address this issue, we propose NExT, a method to teach LLMs to inspect the execution traces of programs (variable states of executed lines) and reason about their run-time behavior through chain-of-thought (CoT) rationales. Specifically, NExT uses self-training to bootstrap a synthetic training set of execution-aware rationales that lead to correct task solutions (e.g., fixed programs) without laborious manual annotation. Experiments on program repair tasks based on MBPP and HumanEval demonstrate that NExT improves the fix rate of a PaLM 2 model, by 26.1% and 14.3% absolute, respectively, with significantly improved rationale quality as verified by automated metrics and human raters. Our model can also generalize to scenarios where program traces are absent at test-time.


Evaluating LLMs at Detecting Errors in LLM Responses

arXiv.org Artificial Intelligence

With Large Language Models (LLMs) being widely used across various tasks, detecting errors in their responses is increasingly crucial. However, little research has been conducted on error detection of LLM responses. Collecting error annotations on LLM responses is challenging due to the subjective nature of many NLP tasks, and thus previous research focuses on tasks of little practical value (e.g., word sorting) or limited error types (e.g., faithfulness in summarization). This work introduces ReaLMistake, the first error detection benchmark consisting of objective, realistic, and diverse errors made by LLMs. ReaLMistake contains three challenging and meaningful tasks that introduce objectively assessable errors in four categories (reasoning correctness, instruction-following, context-faithfulness, and parameterized knowledge), eliciting naturally observed and diverse errors in responses of GPT-4 and Llama 2 70B annotated by experts. We use ReaLMistake to evaluate error detectors based on 12 LLMs. Our findings show: 1) Top LLMs like GPT-4 and Claude 3 detect errors made by LLMs at very low recall, and all LLM-based error detectors perform much worse than humans.


MIMIR: A Streamlined Platform for Personalized Agent Tuning in Domain Expertise

arXiv.org Artificial Intelligence

Recently, large language models (LLMs) have evolved into interactive agents, proficient in planning, tool use, and task execution across a wide variety of tasks. However, without specific agent tuning, open-source models like LLaMA currently struggle to match the efficiency of GPT- 4, particularly given the scarcity of agent-tuning datasets for fine-tuning. In response, we introduce \textsc{Mimir}: a streamlined platform offering a customizable pipeline that enables users to leverage both private knowledge and publicly available, legally compliant datasets at scale for \textbf{personalized agent tuning}. Additionally, \textsc{Mimir} supports the generation of general instruction-tuning datasets from the same input. This dual capability ensures that language agents developed through the platform possess both specific agent abilities and general competencies. \textsc{Mimir} integrates these features into a cohesive end-to-end platform, facilitating everything from the uploading of personalized files to one-click agent fine-tuning.


On the Benefits of Fine-Grained Loss Truncation: A Case Study on Factuality in Summarization

arXiv.org Artificial Intelligence

Text summarization and simplification are among the most widely used applications of AI. However, models developed for such tasks are often prone to hallucination, which can result from training on unaligned data. One efficient approach to address this issue is Loss Truncation (LT) (Kang and Hashimoto, 2020), an approach to modify the standard log loss to adaptively remove noisy examples during training. However, we find that LT alone yields a considerable number of hallucinated entities on various datasets. We study the behavior of the underlying losses between factual and non-factual examples, to understand and refine the performance of LT. We demonstrate that LT's performance is limited when the underlying assumption that noisy targets have higher NLL loss is not satisfied, and find that word-level NLL among entities provides better signal for distinguishing factuality. We then leverage this to propose a fine-grained NLL loss and fine-grained data cleaning strategies, and observe improvements in hallucination reduction across some datasets. Our work is available at https://https://github.com/yale-nlp/fine-grained-lt.