Chouldechova, Alexandra
Validating LLM-as-a-Judge Systems in the Absence of Gold Labels
Guerdan, Luke, Barocas, Solon, Holstein, Kenneth, Wallach, Hanna, Wu, Zhiwei Steven, Chouldechova, Alexandra
The LLM-as-a-judge paradigm, in which a judge LLM system replaces human raters in rating the outputs of other generative AI (GenAI) systems, has come to play a critical role in scaling and standardizing GenAI evaluations. To validate judge systems, evaluators collect multiple human ratings for each item in a validation corpus, and then aggregate the ratings into a single, per-item gold label rating. High agreement rates between these gold labels and judge system ratings are then taken as a sign of good judge system performance. In many cases, however, items or rating criteria may be ambiguous, or there may be principled disagreement among human raters. In such settings, gold labels may not exist for many of the items. In this paper, we introduce a framework for LLM-as-a-judge validation in the absence of gold labels. We present a theoretical analysis drawing connections between different measures of judge system performance under different rating elicitation and aggregation schemes. We also demonstrate empirically that existing validation approaches can select judge systems that are highly suboptimal, performing as much as 34% worse than the systems selected by alternative approaches that we describe. Based on our findings, we provide concrete recommendations for developing more reliable approaches to LLM-as-a-judge validation.
Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice
Cooper, A. Feder, Choquette-Choo, Christopher A., Bogen, Miranda, Jagielski, Matthew, Filippova, Katja, Liu, Ken Ziyu, Chouldechova, Alexandra, Hayes, Jamie, Huang, Yangsibo, Mireshghallah, Niloofar, Shumailov, Ilia, Triantafillou, Eleni, Kairouz, Peter, Mitchell, Nicole, Liang, Percy, Ho, Daniel E., Choi, Yejin, Koyejo, Sanmi, Delgado, Fernando, Grimmelmann, James, Shmatikov, Vitaly, De Sa, Christopher, Barocas, Solon, Cyphert, Amy, Lemley, Mark, boyd, danah, Vaughan, Jennifer Wortman, Brundage, Miles, Bau, David, Neel, Seth, Jacobs, Abigail Z., Terzis, Andreas, Wallach, Hanna, Papernot, Nicolas, Lee, Katherine
We articulate fundamental mismatches between technical methods for machine unlearning in Generative AI, and documented aspirations for broader impact that these methods could have for law and policy. These aspirations are both numerous and varied, motivated by issues that pertain to privacy, copyright, safety, and more. For example, unlearning is often invoked as a solution for removing the effects of targeted information from a generative-AI model's parameters, e.g., a particular individual's personal data or in-copyright expression of Spiderman that was included in the model's training data. Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs, e.g., generations that closely resemble a particular individual's data or reflect the concept of "Spiderman." Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges. We provide a framework for thinking rigorously about these challenges, which enables us to be clear about why unlearning is not a general-purpose solution for circumscribing generative-AI model behavior in service of broader positive impact. We aim for conceptual clarity and to encourage more thoughtful communication among machine learning (ML), law, and policy experts who seek to develop and apply technical methods for compliance with policy objectives.
A Framework for Evaluating LLMs Under Task Indeterminacy
Guerdan, Luke, Wallach, Hanna, Barocas, Solon, Chouldechova, Alexandra
Large language model (LLM) evaluations often assume there is a single correct response -- a gold label -- for each item in the evaluation corpus. However, some tasks can be ambiguous -- i.e., they provide insufficient information to identify a unique interpretation -- or vague -- i.e., they do not clearly indicate where to draw the line when making a determination. Both ambiguity and vagueness can cause task indeterminacy -- the condition where some items in the evaluation corpus have more than one correct response. In this paper, we develop a framework for evaluating LLMs under task indeterminacy. Our framework disentangles the relationships between task specification, human ratings, and LLM responses in the LLM evaluation pipeline. Using our framework, we conduct a synthetic experiment showing that evaluations that use the "gold label" assumption underestimate the true performance. We also provide a method for estimating an error-adjusted performance interval given partial knowledge about indeterminate items in the evaluation corpus. We conclude by outlining implications of our work for the research community.
SureMap: Simultaneous Mean Estimation for Single-Task and Multi-Task Disaggregated Evaluation
Khodak, Mikhail, Mackey, Lester, Chouldechova, Alexandra, Dudรญk, Miroslav
Disaggregated evaluation -- estimation of performance of a machine learning model on different subpopulations -- is a core task when assessing performance and group-fairness of AI systems. A key challenge is that evaluation data is scarce, and subpopulations arising from intersections of attributes (e.g., race, sex, age) are often tiny. Today, it is common for multiple clients to procure the same AI model from a model developer, and the task of disaggregated evaluation is faced by each customer individually. This gives rise to what we call the multi-task disaggregated evaluation problem, wherein multiple clients seek to conduct a disaggregated evaluation of a given model in their own data setting (task). In this work we develop a disaggregated evaluation method called SureMap that has high estimation accuracy for both multi-task and single-task disaggregated evaluations of blackbox models. SureMap's efficiency gains come from (1) transforming the problem into structured simultaneous Gaussian mean estimation and (2) incorporating external data, e.g., from the AI system creator or from their other clients. Our method combines maximum a posteriori (MAP) estimation using a well-chosen prior together with cross-validation-free tuning via Stein's unbiased risk estimate (SURE). We evaluate SureMap on disaggregated evaluation tasks in multiple domains, observing significant accuracy improvements over several strong competitors.
A structured regression approach for evaluating model performance across intersectional subgroups
Herlihy, Christine, Truong, Kimberly, Chouldechova, Alexandra, Dudik, Miroslav
Disaggregated evaluation is a central task in AI fairness assessment, with the goal to measure an AI system's performance across different subgroups defined by combinations of demographic or other sensitive attributes. The standard approach is to stratify the evaluation data across subgroups and compute performance metrics separately for each group. However, even for moderately-sized evaluation datasets, sample sizes quickly get small once considering intersectional subgroups, which greatly limits the extent to which intersectional groups are considered in many disaggregated evaluations. In this work, we introduce a structured regression approach to disaggregated evaluation that we demonstrate can yield reliable system performance estimates even for very small subgroups. We also provide corresponding inference strategies for constructing confidence intervals and explore how goodness-of-fit testing can yield insight into the structure of fairness-related harms experienced by intersectional groups. We evaluate our approach on two publicly available datasets, and several variants of semi-synthetic data. The results show that our method is considerably more accurate than the standard approach, especially for small subgroups, and goodness-of-fit testing helps identify the key factors that drive differences in performance.
The Impact of Differential Feature Under-reporting on Algorithmic Fairness
Akpinar, Nil-Jana, Lipton, Zachary C., Chouldechova, Alexandra
Predictive risk models in the public sector are commonly developed using administrative data that is more complete for subpopulations that more greatly rely on public services. In the United States, for instance, information on health care utilization is routinely available to government agencies for individuals supported by Medicaid and Medicare, but not for the privately insured. Critiques of public sector algorithms have identified such differential feature under-reporting as a driver of disparities in algorithmic decision-making. Yet this form of data bias remains understudied from a technical viewpoint. While prior work has examined the fairness impacts of additive feature noise and features that are clearly marked as missing, the setting of data missingness absent indicators (i.e. differential feature under-reporting) has been lacking in research attention. In this work, we present an analytically tractable model of differential feature under-reporting which we then use to characterize the impact of this kind of data bias on algorithmic fairness. We demonstrate how standard missing data methods typically fail to mitigate bias in this setting, and propose a new set of methods specifically tailored to differential feature under-reporting. Our results show that, in real world data settings, under-reporting typically leads to increasing disparities. The proposed solution methods show success in mitigating increases in unfairness.
Multi-Target Multiplicity: Flexibility and Fairness in Target Specification under Resource Constraints
Watson-Daniels, Jamelle, Barocas, Solon, Hofman, Jake M., Chouldechova, Alexandra
Prediction models have been widely adopted as the basis for decision-making in domains as diverse as employment, education, lending, and health. Yet, few real world problems readily present themselves as precisely formulated prediction tasks. In particular, there are often many reasonable target variable options. Prior work has argued that this is an important and sometimes underappreciated choice, and has also shown that target choice can have a significant impact on the fairness of the resulting model. However, the existing literature does not offer a formal framework for characterizing the extent to which target choice matters in a particular task. Our work fills this gap by drawing connections between the problem of target choice and recent work on predictive multiplicity. Specifically, we introduce a conceptual and computational framework for assessing how the choice of target affects individuals' outcomes and selection rate disparities across groups. We call this multi-target multiplicity. Along the way, we refine the study of single-target multiplicity by introducing notions of multiplicity that respect resource constraints -- a feature of many real-world tasks that is not captured by existing notions of predictive multiplicity. We apply our methods on a healthcare dataset, and show that the level of multiplicity that stems from target variable choice can be greater than that stemming from nearly-optimal models of a single target.
Examining risks of racial biases in NLP tools for child protective services
Field, Anjalie, Coston, Amanda, Gandhi, Nupoor, Chouldechova, Alexandra, Putnam-Hornstein, Emily, Steier, David, Tsvetkov, Yulia
Although much literature has established the presence of demographic bias in natural language processing (NLP) models, most work relies on curated bias metrics that may not be reflective of real-world applications. At the same time, practitioners are increasingly using algorithmic tools in high-stakes settings, with particular recent interest in NLP. In this work, we focus on one such setting: child protective services (CPS). CPS workers often write copious free-form text notes about families they are working with, and CPS agencies are actively seeking to deploy NLP models to leverage these data. Given well-established racial bias in this setting, we investigate possible ways deployed NLP is liable to increase racial disparities. We specifically examine word statistics within notes and algorithmic fairness in risk prediction, coreference resolution, and named entity recognition (NER). We document consistent algorithmic unfairness in NER models, possible algorithmic unfairness in coreference resolution models, and little evidence of exacerbated racial bias in risk prediction. While there is existing pronounced criticism of risk prediction, our results expose previously undocumented risks of racial bias in realistic information extraction systems, highlighting potential concerns in deploying them, even though they may appear more benign. Our work serves as a rare realistic examination of NLP algorithmic fairness in a potential deployed setting and a timely investigation of a specific risk associated with deploying NLP in CPS settings.
Leveraging Expert Consistency to Improve Algorithmic Decision Support
De-Arteaga, Maria, Jeanselme, Vincent, Dubrawski, Artur, Chouldechova, Alexandra
Machine learning (ML) is increasingly being used to support high-stakes decisions, a trend owed in part to its promise of superior predictive power relative to human assessment. However, there is frequently a gap between decision objectives and what is captured in the observed outcomes used as labels to train ML models. As a result, machine learning models may fail to capture important dimensions of decision criteria, hampering their utility for decision support. In this work, we explore the use of historical expert decisions as a rich -- yet imperfect -- source of information that is commonly available in organizational information systems, and show that it can be leveraged to bridge the gap between decision objectives and algorithm objectives. We consider the problem of estimating expert consistency indirectly when each case in the data is assessed by a single expert, and propose influence function-based methodology as a solution to this problem. We then incorporate the estimated expert consistency into a predictive model through a training-time label amalgamation approach. This approach allows ML models to learn from experts when there is inferred expert consistency, and from observed labels otherwise. We also propose alternative ways of leveraging inferred consistency via hybrid and deferral models. In our empirical evaluation, focused on the context of child maltreatment hotline screenings, we show that (1) there are high-risk cases whose risk is considered by the experts but not wholly captured in the target labels used to train a deployed model, and (2) the proposed approach significantly improves precision for these cases.
The Impact of Algorithmic Risk Assessments on Human Predictions and its Analysis via Crowdsourcing Studies
Fogliato, Riccardo, Chouldechova, Alexandra, Lipton, Zachary
As algorithmic risk assessment instruments (RAIs) are increasingly adopted to assist decision makers, their predictive performance and potential to promote inequity have come under scrutiny. However, while most studies examine these tools in isolation, researchers have come to recognize that assessing their impact requires understanding the behavior of their human interactants. In this paper, building off of several recent crowdsourcing works focused on criminal justice, we conduct a vignette study in which laypersons are tasked with predicting future re-arrests. Our key findings are as follows: (1) Participants often predict that an offender will be rearrested even when they deem the likelihood of re-arrest to be well below 50%; (2) Participants do not anchor on the RAI's predictions; (3) The time spent on the survey varies widely across participants and most cases are assessed in less than 10 seconds; (4) Judicial decisions, unlike participants' predictions, depend in part on factors that are orthogonal to the likelihood of re-arrest. These results highlight the influence of several crucial but often overlooked design decisions and concerns around generalizability when constructing crowdsourcing studies to analyze the impacts of RAIs.