Chen, Yan
Graphon Particle Systems, Part II: Dynamics of Distributed Stochastic Continuum Optimization
Chen, Yan, Li, Tao
We study the distributed optimization problem over a graphon with a continuum of nodes, which is regarded as the limit of the distributed networked optimization as the number of nodes goes to infinity. Each node has a private local cost function. The global cost function, which all nodes cooperatively minimize, is the integral of the local cost functions on the node set. We propose stochastic gradient descent and gradient tracking algorithms over the graphon. We establish a general lemma for the upper bound estimation related to a class of time-varying differential inequalities with negative linear terms, based upon which, we prove that for both kinds of algorithms, the second moments of the nodes' states are uniformly bounded. Especially, for the stochastic gradient tracking algorithm, we transform the convergence analysis into the asymptotic property of coupled nonlinear differential inequalities with time-varying coefficients and develop a decoupling method. For both kinds of algorithms, we show that by choosing the time-varying algorithm gains properly, all nodes' states achieve $\mathcal{L}^{\infty}$-consensus for a connected graphon. Furthermore, if the local cost functions are strongly convex, then all nodes' states converge to the minimizer of the global cost function and the auxiliary states in the stochastic gradient tracking algorithm converge to the gradient value of the global cost function at the minimizer uniformly in mean square.
Fast Asymmetric Factorization for Large Scale Multiple Kernel Clustering
Chen, Yan, Du, Liang, Duan, Lei
Kernel methods are extensively employed for nonlinear data clustering, yet their effectiveness heavily relies on selecting suitable kernels and associated parameters, posing challenges in advance determination. In response, Multiple Kernel Clustering (MKC) has emerged as a solution, allowing the fusion of information from multiple base kernels for clustering. However, both early fusion and late fusion methods for large-scale MKC encounter challenges in memory and time constraints, necessitating simultaneous optimization of both aspects. To address this issue, we propose Efficient Multiple Kernel Concept Factorization (EMKCF), which constructs a new sparse kernel matrix inspired by local regression to achieve memory efficiency. EMKCF learns consensus and individual representations by extending orthogonal concept factorization to handle multiple kernels for time efficiency. Experimental results demonstrate the efficiency and effectiveness of EMKCF on benchmark datasets compared to state-of-the-art methods. The proposed method offers a straightforward, scalable, and effective solution for large-scale MKC tasks.
Deployable polyhedrons with one-DOF radial transformation
Gu, Yuanqing, Chen, Yan
Deployable polyhedrons can transform between Platonic and Archimedean polyhedrons to meet the demands of various engineering applications. However, the existing design solutions are often with multiple degrees of freedom and complicated mechanism links and joints, which greatly limited their potential in practice. Combining the fundamentals of solid geometry and mechanism kinematics, this paper proposes a family of kirigami Archimedean polyhedrons based on the N-fold-symmetric loops of spatial 7R linkage, which perform one-DOF radial transformation following tetrahedral, octahedral, or icosahedral symmetry. Moreover, in each symmetric polyhedral group, three different transforming paths can be achieved from one identical deployed configuration. We also demonstrated that such design strategy can be readily applied to polyhedral tessellation. This work provides a family of rich solutions for deployable polyhedrons to facilitate their applications in aerospace exploration, architecture, metamaterials and so on.
Transfer and Alignment Network for Generalized Category Discovery
An, Wenbin, Tian, Feng, Shi, Wenkai, Chen, Yan, Wu, Yaqiang, Wang, Qianying, Chen, Ping
Generalized Category Discovery is a crucial real-world task. Despite the improved performance on known categories, current methods perform poorly on novel categories. We attribute the poor performance to two reasons: biased knowledge transfer between labeled and unlabeled data and noisy representation learning on the unlabeled data. To mitigate these two issues, we propose a Transfer and Alignment Network (TAN), which incorporates two knowledge transfer mechanisms to calibrate the biased knowledge and two feature alignment mechanisms to learn discriminative features. Specifically, we model different categories with prototypes and transfer the prototypes in labeled data to correct model bias towards known categories. On the one hand, we pull instances with known categories in unlabeled data closer to these prototypes to form more compact clusters and avoid boundary overlap between known and novel categories. On the other hand, we use these prototypes to calibrate noisy prototypes estimated from unlabeled data based on category similarities, which allows for more accurate estimation of prototypes for novel categories that can be used as reliable learning targets later. After knowledge transfer, we further propose two feature alignment mechanisms to acquire both instance- and category-level knowledge from unlabeled data by aligning instance features with both augmented features and the calibrated prototypes, which can boost model performance on both known and novel categories with less noise. Experiments on three benchmark datasets show that our model outperforms SOTA methods, especially on novel categories. Theoretical analysis is provided for an in-depth understanding of our model in general. Our code and data are available at https://github.com/Lackel/TAN.
Generalized Category Discovery with Large Language Models in the Loop
An, Wenbin, Shi, Wenkai, Tian, Feng, Lin, Haonan, Wang, QianYing, Wu, Yaqiang, Cai, Mingxiang, Wang, Luyan, Chen, Yan, Zhu, Haiping, Chen, Ping
Generalized Category Discovery (GCD) is a crucial task that aims to recognize both known and novel categories from a set of unlabeled data by utilizing a few labeled data with only known categories. Due to the lack of supervision and category information, current methods usually perform poorly on novel categories and struggle to reveal semantic meanings of the discovered clusters, which limits their applications in the real world. To mitigate above issues, we propose Loop, an end-to-end active-learning framework that introduces Large Language Models (LLMs) into the training loop, which can boost model performance and generate category names without relying on any human efforts. Specifically, we first propose Local Inconsistent Sampling (LIS) to select samples that have a higher probability of falling to wrong clusters, based on neighborhood prediction consistency and entropy of cluster assignment probabilities. Then we propose a Scalable Query strategy to allow LLMs to choose true neighbors of the selected samples from multiple candidate samples. Based on the feedback from LLMs, we perform Refined Neighborhood Contrastive Learning (RNCL) to pull samples and their neighbors closer to learn clustering-friendly representations. Finally, we select representative samples from clusters corresponding to novel categories to allow LLMs to generate category names for them. Extensive experiments on three benchmark datasets show that Loop outperforms SOTA models by a large margin and generates accurate category names for the discovered clusters. We will release our code and data after publication.
DNA: Denoised Neighborhood Aggregation for Fine-grained Category Discovery
An, Wenbin, Tian, Feng, Shi, Wenkai, Chen, Yan, Zheng, Qinghua, Wang, QianYing, Chen, Ping
Discovering fine-grained categories from coarsely labeled data is a practical and challenging task, which can bridge the gap between the demand for fine-grained analysis and the high annotation cost. Previous works mainly focus on instance-level discrimination to learn low-level features, but ignore semantic similarities between data, which may prevent these models learning compact cluster representations. In this paper, we propose Denoised Neighborhood Aggregation (DNA), a self-supervised framework that encodes semantic structures of data into the embedding space. Specifically, we retrieve k-nearest neighbors of a query as its positive keys to capture semantic similarities between data and then aggregate information from the neighbors to learn compact cluster representations, which can make fine-grained categories more separatable. However, the retrieved neighbors can be noisy and contain many false-positive keys, which can degrade the quality of learned embeddings. To cope with this challenge, we propose three principles to filter out these false neighbors for better representation learning. Furthermore, we theoretically justify that the learning objective of our framework is equivalent to a clustering loss, which can capture semantic similarities between data to form compact fine-grained clusters. Extensive experiments on three benchmark datasets show that our method can retrieve more accurate neighbors (21.31% accuracy improvement) and outperform state-of-the-art models by a large margin (average 9.96% improvement on three metrics). Our code and data are available at https://github.com/Lackel/DNA.
DREAM-PCD: Deep Reconstruction and Enhancement of mmWave Radar Pointcloud
Geng, Ruixu, Li, Yadong, Zhang, Dongheng, Wu, Jincheng, Gao, Yating, Hu, Yang, Chen, Yan
Millimeter-wave (mmWave) radar pointcloud offers attractive potential for 3D sensing, thanks to its robustness in challenging conditions such as smoke and low illumination. However, existing methods failed to simultaneously address the three main challenges in mmWave radar pointcloud reconstruction: specular information lost, low angular resolution, and strong interference and noise. In this paper, we propose DREAM-PCD, a novel framework that combines signal processing and deep learning methods into three well-designed components to tackle all three challenges: Non-Coherent Accumulation for dense points, Synthetic Aperture Accumulation for improved angular resolution, and Real-Denoise Multiframe network for noise and interference removal. Moreover, the causal multiframe and "real-denoise" mechanisms in DREAM-PCD significantly enhance the generalization performance. We also introduce RadarEyes, the largest mmWave indoor dataset with over 1,000,000 frames, featuring a unique design incorporating two orthogonal single-chip radars, lidar, and camera, enriching dataset diversity and applications. Experimental results demonstrate that DREAM-PCD surpasses existing methods in reconstruction quality, and exhibits superior generalization and real-time capabilities, enabling high-quality real-time reconstruction of radar pointcloud under various parameters and scenarios. We believe that DREAM-PCD, along with the RadarEyes dataset, will significantly advance mmWave radar perception in future real-world applications.
DiLogics: Creating Web Automation Programs With Diverse Logics
Pu, Kevin, Yang, Jim, Yuan, Angel, Ma, Minyi, Dong, Rui, Wang, Xinyu, Chen, Yan, Grossman, Tovi
Knowledge workers frequently encounter repetitive web data entry tasks, like updating records or placing orders. Web automation increases productivity, but translating tasks to web actions accurately and extending to new specifications is challenging. Existing tools can automate tasks that perform the same logical trace of UI actions (e.g., input text in each field in order), but do not support tasks requiring different executions based on varied input conditions. We present DiLogics, a programming-by-demonstration system that utilizes NLP to assist users in creating web automation programs that handle diverse specifications. DiLogics first semantically segments input data to structured task steps. By recording user demonstrations for each step, DiLogics generalizes the web macros to novel but semantically similar task requirements. Our evaluation showed that non-experts can effectively use DiLogics to create automation programs that fulfill diverse input instructions. DiLogics provides an efficient, intuitive, and expressive method for developing web automation programs satisfying diverse specifications.
Less Learn Shortcut: Analyzing and Mitigating Learning of Spurious Feature-Label Correlation
Du, Yanrui, Yan, Jing, Chen, Yan, Liu, Jing, Zhao, Sendong, She, Qiaoqiao, Wu, Hua, Wang, Haifeng, Qin, Bing
Recent research has revealed that deep neural networks often take dataset biases as a shortcut to make decisions rather than understand tasks, leading to failures in real-world applications. In this study, we focus on the spurious correlation between word features and labels that models learn from the biased data distribution of training data. In particular, we define the word highly co-occurring with a specific label as biased word, and the example containing biased word as biased example. Our analysis shows that biased examples are easier for models to learn, while at the time of prediction, biased words make a significantly higher contribution to the models' predictions, and models tend to assign predicted labels over-relying on the spurious correlation between words and labels. To mitigate models' over-reliance on the shortcut (i.e. spurious correlation), we propose a training strategy Less-Learn-Shortcut (LLS): our strategy quantifies the biased degree of the biased examples and down-weights them accordingly. Experimental results on Question Matching, Natural Language Inference and Sentiment Analysis tasks show that LLS is a task-agnostic strategy and can improve the model performance on adversarial data while maintaining good performance on in-domain data.
CAROM -- Vehicle Localization and Traffic Scene Reconstruction from Monocular Cameras on Road Infrastructures
Lu, Duo, Jammula, Varun C, Como, Steven, Wishart, Jeffrey, Chen, Yan, Yang, Yezhou
Traffic monitoring cameras are powerful tools for traffic management and essential components of intelligent road infrastructure systems. In this paper, we present a vehicle localization and traffic scene reconstruction framework using these cameras, dubbed as CAROM, i.e., "CARs On the Map". CAROM processes traffic monitoring videos and converts them to anonymous data structures of vehicle type, 3D shape, position, and velocity for traffic scene reconstruction and replay. Through collaborating with a local department of transportation in the United States, we constructed a benchmarking dataset containing GPS data, roadside camera videos, and drone videos to validate the vehicle tracking results. On average, the localization error is approximately 0.8 m and 1.7 m within the range of 50 m and 120 m from the cameras, respectively.