Goto

Collaborating Authors

 Chen, Elynn


Bridging Domain Adaptation and Graph Neural Networks: A Tensor-Based Framework for Effective Label Propagation

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have recently become the predominant tools for studying graph data. Despite state-of-the-art performance on graph classification tasks, GNNs are overwhelmingly trained in a single domain under supervision, thus necessitating a prohibitively high demand for labels and resulting in poorly transferable representations. To address this challenge, we propose the Label-Propagation Tensor Graph Neural Network (LP-TGNN) framework to bridge the gap between graph data and traditional domain adaptation methods. It extracts graph topological information holistically with a tensor architecture and then reduces domain discrepancy through label propagation. It is readily compatible with general GNNs and domain adaptation techniques with minimal adjustment through pseudo-labeling. Experiments on various real-world benchmarks show that our LP-TGNN outperforms baselines by a notable margin. We also validate and analyze each component of the proposed framework in the ablation study.


Stochastic Linear Bandits with Latent Heterogeneity

arXiv.org Machine Learning

This paper addresses the critical challenge of latent heterogeneity in online decision-making, where individual responses to business actions vary due to unobserved characteristics. While existing approaches in data-driven decision-making have focused on observable heterogeneity through contextual features, they fall short when heterogeneity stems from unobservable factors such as lifestyle preferences and personal experiences. We propose a novel latent heterogeneous bandit framework that explicitly models this unobserved heterogeneity in customer responses, with promotion targeting as our primary example. Our methodology introduces an innovative algorithm that simultaneously learns latent group memberships and group-specific reward functions. Through theoretical analysis and empirical validation using data from a mobile commerce platform, we establish high-probability bounds for parameter estimation, convergence rates for group classification, and comprehensive regret bounds. Notably, our theoretical analysis reveals two distinct types of regret measures: a ``strong regret'' against an oracle with perfect knowledge of customer memberships, which remains non-sub-linear due to inherent classification uncertainty, and a ``regular regret'' against an oracle aware only of deterministic components, for which our algorithm achieves a sub-linear rate that is minimax optimal in horizon length and dimension. We further demonstrate that existing bandit algorithms ignoring latent heterogeneity incur constant average regret that accumulates linearly over time. Our framework provides practitioners with new tools for decision-making under latent heterogeneity and extends to various business applications, including personalized pricing, resource allocation, and inventory management.


Transition Transfer $Q$-Learning for Composite Markov Decision Processes

arXiv.org Machine Learning

To bridge the gap between empirical success and theoretical understanding in transfer reinforcement learning (RL), we study a principled approach with provable performance guarantees. We introduce a novel composite MDP framework where high-dimensional transition dynamics are modeled as the sum of a low-rank component representing shared structure and a sparse component capturing task-specific variations. This relaxes the common assumption of purely low-rank transition models, allowing for more realistic scenarios where tasks share core dynamics but maintain individual variations. We introduce UCB-TQL (Upper Confidence Bound Transfer Q-Learning), designed for transfer RL scenarios where multiple tasks share core linear MDP dynamics but diverge along sparse dimensions. When applying UCB-TQL to a target task after training on a source task with sufficient trajectories, we achieve a regret bound of $\tilde{O}(\sqrt{eH^5N})$ that scales independently of the ambient dimension. Here, $N$ represents the number of trajectories in the target task, while $e$ quantifies the sparse differences between tasks. This result demonstrates substantial improvement over single task RL by effectively leveraging their structural similarities. Our theoretical analysis provides rigorous guarantees for how UCB-TQL simultaneously exploits shared dynamics while adapting to task-specific variations.


Statistical Inference for Low-Rank Tensor Models

arXiv.org Machine Learning

Statistical inference for tensors has emerged as a critical challenge in analyzing high-dimensional data in modern data science. This paper introduces a unified framework for inferring general and low-Tucker-rank linear functionals of low-Tucker-rank signal tensors for several low-rank tensor models. Our methodology tackles two primary goals: achieving asymptotic normality and constructing minimax-optimal confidence intervals. By leveraging a debiasing strategy and projecting onto the tangent space of the low-Tucker-rank manifold, we enable inference for general and structured linear functionals, extending far beyond the scope of traditional entrywise inference. Specifically, in the low-Tucker-rank tensor regression or PCA model, we establish the computational and statistical efficiency of our approach, achieving near-optimal sample size requirements (in regression model) and signal-to-noise ratio (SNR) conditions (in PCA model) for general linear functionals without requiring sparsity in the loading tensor. Our framework also attains both computationally and statistically optimal sample size and SNR thresholds for low-Tucker-rank linear functionals. Numerical experiments validate our theoretical results, showcasing the framework's utility in diverse applications. This work addresses significant methodological gaps in statistical inference, advancing tensor analysis for complex and high-dimensional data environments.


Deep Transfer $Q$-Learning for Offline Non-Stationary Reinforcement Learning

arXiv.org Machine Learning

In dynamic decision-making scenarios across business and healthcare, leveraging sample trajectories from diverse populations can significantly enhance reinforcement learning (RL) performance for specific target populations, especially when sample sizes are limited. While existing transfer learning methods primarily focus on linear regression settings, they lack direct applicability to reinforcement learning algorithms. This paper pioneers the study of transfer learning for dynamic decision scenarios modeled by non-stationary finite-horizon Markov decision processes, utilizing neural networks as powerful function approximators and backward inductive learning. We demonstrate that naive sample pooling strategies, effective in regression settings, fail in Markov decision processes.To address this challenge, we introduce a novel ``re-weighted targeting procedure'' to construct ``transferable RL samples'' and propose ``transfer deep $Q^*$-learning'', enabling neural network approximation with theoretical guarantees. We assume that the reward functions are transferable and deal with both situations in which the transition densities are transferable or nontransferable. Our analytical techniques for transfer learning in neural network approximation and transition density transfers have broader implications, extending to supervised transfer learning with neural networks and domain shift scenarios. Empirical experiments on both synthetic and real datasets corroborate the advantages of our method, showcasing its potential for improving decision-making through strategically constructing transferable RL samples in non-stationary reinforcement learning contexts.


High-Dimensional Tensor Discriminant Analysis with Incomplete Tensors

arXiv.org Machine Learning

Tensor classification is gaining importance across fields, yet handling partially observed data remains challenging. In this paper, we introduce a novel approach to tensor classification with incomplete data, framed within high-dimensional tensor linear discriminant analysis. Specifically, we consider a high-dimensional tensor predictor with missing observations under the Missing Completely at Random (MCR) assumption and employ the Tensor Gaussian Mixture Model (TGMM) to capture the relationship between the tensor predictor and class label. We propose a Tensor Linear Discriminant Analysis with Missing Data (Tensor LDA-MD) algorithm, which manages high-dimensional tensor predictors with missing entries by leveraging the decomposable low-rank structure of the discriminant tensor. Our work establishes convergence rates for the estimation error of the discriminant tensor with incomplete data and minimax optimal bounds for the misclassification rate, addressing key gaps in the literature. Additionally, we derive large deviation bounds for the generalized mode-wise sample covariance matrix and its inverse, which are crucial tools in our analysis and hold independent interest. Our method demonstrates excellent performance in simulations and real data analysis, even with significant proportions of missing data.


TEAFormers: TEnsor-Augmented Transformers for Multi-Dimensional Time Series Forecasting

arXiv.org Machine Learning

Multi-dimensional time series data, such as matrix and tensor-variate time series, are increasingly prevalent in fields such as economics, finance, and climate science. Traditional Transformer models, though adept with sequential data, do not effectively preserve these multi-dimensional structures, as their internal operations in effect flatten multi-dimensional observations into vectors, thereby losing critical multi-dimensional relationships and patterns. To address this, we introduce the Tensor-Augmented Transformer (TEAFormer), a novel method that incorporates tensor expansion and compression within the Transformer framework to maintain and leverage the inherent multi-dimensional structures, thus reducing computational costs and improving prediction accuracy. The core feature of the TEAFormer, the Tensor-Augmentation (TEA) module, utilizes tensor expansion to enhance multi-view feature learning and tensor compression for efficient information aggregation and reduced computational load. The TEA module is not just a specific model architecture but a versatile component that is highly compatible with the attention mechanism and the encoder-decoder structure of Transformers, making it adaptable to existing Transformer architectures. Our comprehensive experiments, which integrate the TEA module into three popular time series Transformer models across three real-world benchmarks, show significant performance enhancements, highlighting the potential of TEAFormers for cutting-edge time series forecasting.


Conditional Prediction ROC Bands for Graph Classification

arXiv.org Machine Learning

Graph classification in medical imaging and drug discovery requires accuracy and robust uncertainty quantification. To address this need, we introduce Conditional Prediction ROC (CP-ROC) bands, offering uncertainty quantification for ROC curves and robustness to distributional shifts in test data. Although developed for Tensorized Graph Neural Networks (TGNNs), CP-ROC is adaptable to general Graph Neural Networks (GNNs) and other machine learning models. We establish statistically guaranteed coverage for CP-ROC under a local exchangeability condition. This addresses uncertainty challenges for ROC curves under non-iid setting, ensuring reliability when test graph distributions differ from training data. Empirically, to establish local exchangeability for TGNNs, we introduce a data-driven approach to construct local calibration sets for graphs. Comprehensive evaluations show that CP-ROC significantly improves prediction reliability across diverse tasks. This method enhances uncertainty quantification efficiency and reliability for ROC curves, proving valuable for real-world applications with non-iid objects.


Tensor-Fused Multi-View Graph Contrastive Learning

arXiv.org Artificial Intelligence

Graph contrastive learning (GCL) has emerged as a promising approach to enhance graph neural networks' (GNNs) ability to learn rich representations from unlabeled graph-structured data. However, current GCL models face challenges with computational demands and limited feature utilization, often relying only on basic graph properties like node degrees and edge attributes. This constrains their capacity to fully capture the complex topological characteristics of real-world phenomena represented by graphs. To address these limitations, we propose Tensor-Fused Multi-View Graph Contrastive Learning (TensorMV-GCL), a novel framework that integrates extended persistent homology (EPH) with GCL representations and facilitates multi-scale feature extraction. Our approach uniquely employs tensor aggregation and compression to fuse information from graph and topological features obtained from multiple augmented views of the same graph. By incorporating tensor concatenation and contraction modules, we reduce computational overhead by separating feature tensor aggregation and transformation. Furthermore, we enhance the quality of learned topological features and model robustness through noise-injected EPH. Experiments on molecular, bioinformatic, and social network datasets demonstrate TensorMV-GCL's superiority, outperforming 15 state-of-the-art methods in graph classification tasks across 9 out of 11 benchmarks while achieving comparable results on the remaining two. The code for this paper is publicly available at https://github.com/CS-SAIL/Tensor-MV-GCL.git.


Conditional Uncertainty Quantification for Tensorized Topological Neural Networks

arXiv.org Machine Learning

Graph Neural Networks (GNNs) have become the de facto standard for analyzing graph-structured data, leveraging message-passing techniques to capture both structural and node feature information. However, recent studies have raised concerns about the statistical reliability of uncertainty estimates produced by GNNs. This paper addresses this crucial challenge by introducing a novel technique for quantifying uncertainty in non-exchangeable graph-structured data, while simultaneously reducing the size of label prediction sets in graph classification tasks. We propose Conformalized Tensor-based Topological Neural Networks (CF-T2NN), a new approach for rigorous prediction inference over graphs. CF-T2NN employs tensor decomposition and topological knowledge learning to navigate and interpret the inherent uncertainty in decision-making processes. This method enables a more nuanced understanding and handling of prediction uncertainties, enhancing the reliability and interpretability of neural network outcomes. Our empirical validation, conducted across 10 real-world datasets, demonstrates the superiority of CF-T2NN over a wide array of state-of-the-art methods on various graph benchmarks. This work not only enhances the GNN framework with robust uncertainty quantification capabilities but also sets a new standard for reliability and precision in graph-structured data analysis.