Goto

Collaborating Authors

 Chen, Changyou


CLAP-S: Support Set Based Adaptation for Downstream Fiber-optic Acoustic Recognition

arXiv.org Artificial Intelligence

Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber-optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiber-optic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory-recorded fiber-optic ESC-50 datasets and a real-world fiber-optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks. The code and gunshot-firework dataset are available at https://github.com/Jingchensun/clap-s.


A High-Quality Text-Rich Image Instruction Tuning Dataset via Hybrid Instruction Generation

arXiv.org Artificial Intelligence

Large multimodal models still struggle with text-rich images because of inadequate training data. Self-Instruct provides an annotation-free way for generating instruction data, but its quality is poor, as multimodal alignment remains a hurdle even for the largest models. In this work, we propose LLaVAR-2, to enhance multimodal alignment for text-rich images through hybrid instruction generation between human annotators and large language models. Specifically, it involves detailed image captions from human annotators, followed by the use of these annotations in tailored text prompts for GPT-4o to curate a dataset. It also implements several mechanisms to filter out low-quality data, and the resulting dataset comprises 424k high-quality pairs of instructions. Empirical results show that models fine-tuned on this dataset exhibit impressive enhancements over those trained with self-instruct data.


Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements

arXiv.org Artificial Intelligence

Diffusion models have emerged as a powerful foundation model for visual generation. With an appropriate sampling process, it can effectively serve as a generative prior to solve general inverse problems. Current posterior sampling based methods take the measurement (i.e., degraded image sample) into the posterior sampling to infer the distribution of the target data (i.e., clean image sample). However, in this manner, we show that high-frequency information can be prematurely introduced during the early stages, which could induce larger posterior estimate errors during the restoration sampling. To address this issue, we first reveal that forming the log posterior gradient with the noisy measurement ( i.e., samples from a diffusion forward process) instead of the clean one can benefit the reverse process. Consequently, we propose a novel diffusion posterior sampling method DPS-CM, which incorporates a Crafted Measurement (i.e., samples generated by a reverse denoising process, compared to random sampling with noise in standard methods) to form the posterior estimate. This integration aims to mitigate the misalignment with the diffusion prior caused by cumulative posterior estimate errors. Experimental results demonstrate that our approach significantly improves the overall capacity to solve general and noisy inverse problems, such as Gaussian deblurring, super-resolution, inpainting, nonlinear deblurring, and tasks with Poisson noise, relative to existing approaches.


TextLap: Customizing Language Models for Text-to-Layout Planning

arXiv.org Artificial Intelligence

Automatic generation of graphical layouts is crucial for many real-world applications, including designing posters, flyers, advertisements, and graphical user interfaces. Given the incredible ability of Large language models (LLMs) in both natural language understanding and generation, we believe that we could customize an LLM to help people create compelling graphical layouts starting with only text instructions from the user. We call our method TextLap (text-based layout planning). It uses a curated instruction-based layout planning dataset (InsLap) to customize LLMs as a graphic designer. We demonstrate the effectiveness of TextLap and show that it outperforms strong baselines, including GPT-4 based methods, for image generation and graphical design benchmarks.


TRINS: Towards Multimodal Language Models that Can Read

arXiv.org Artificial Intelligence

Large multimodal language models have shown remarkable proficiency in understanding and editing images. However, a majority of these visually-tuned models struggle to comprehend the textual content embedded in images, primarily due to the limitation of training data. In this work, we introduce TRINS: a Text-Rich image INStruction dataset, with the objective of enhancing the reading ability of the multimodal large language model. TRINS is built upon LAION using hybrid data annotation strategies that include machine-assisted and human-assisted annotation processes. It contains 39,153 text-rich images, captions, and 102,437 questions. Specifically, we show that the number of words per annotation in TRINS is significantly longer than that of related datasets, providing new challenges. Furthermore, we introduce a simple and effective architecture, called a Language-vision Reading Assistant (LaRA), which is good at understanding textual content within images. LaRA outperforms existing state-of-the-art multimodal large language models on the TRINS dataset, as well as other classical benchmarks. Lastly, we conducted a comprehensive evaluation with TRINS on various text-rich image understanding and generation tasks, demonstrating its effectiveness.


LLaVA Finds Free Lunch: Teaching Human Behavior Improves Content Understanding Abilities Of LLMs

arXiv.org Artificial Intelligence

Communication is defined as "Who says what to whom with what effect." A message from a communicator generates downstream receiver effects, also known as behavior. Receiver behavior, being a downstream effect of the message, carries rich signals about it. Even after carrying signals about the message, the behavior data is often ignored while training large language models. We show that training LLMs on receiver behavior can actually help improve their content-understanding abilities. Specifically, we show that training LLMs to predict the receiver behavior of likes and comments improves the LLM's performance on a wide variety of downstream content understanding tasks. We show this performance increase over 40 video and image understanding tasks over 23 benchmark datasets across both 0-shot and fine-tuning settings, outperforming many supervised baselines. Moreover, since receiver behavior, such as likes and comments, is collected by default on the internet and does not need any human annotations to be useful, the performance improvement we get after training on this data is essentially free-lunch. We release the receiver behavior cleaned comments and likes of 750k images and videos collected from multiple platforms along with our instruction-tuning data.


Discriminative Adversarial Unlearning

arXiv.org Artificial Intelligence

We introduce a novel machine unlearning framework founded upon the established principles of the min-max optimization paradigm. We capitalize on the capabilities of strong Membership Inference Attacks (MIA) to facilitate the unlearning of specific samples from a trained model. We consider the scenario of two networks, the attacker $\mathbf{A}$ and the trained defender $\mathbf{D}$ pitted against each other in an adversarial objective, wherein the attacker aims at teasing out the information of the data to be unlearned in order to infer membership, and the defender unlearns to defend the network against the attack, whilst preserving its general performance. The algorithm can be trained end-to-end using backpropagation, following the well known iterative min-max approach in updating the attacker and the defender. We additionally incorporate a self-supervised objective effectively addressing the feature space discrepancies between the forget set and the validation set, enhancing unlearning performance. Our proposed algorithm closely approximates the ideal benchmark of retraining from scratch for both random sample forgetting and class-wise forgetting schemes on standard machine-unlearning datasets. Specifically, on the class unlearning scheme, the method demonstrates near-optimal performance and comprehensively overcomes known methods over the random sample forgetting scheme across all metrics and multiple network pruning strategies.


Towards Aligned Layout Generation via Diffusion Model with Aesthetic Constraints

arXiv.org Artificial Intelligence

Controllable layout generation refers to the process of creating a plausible visual arrangement of elements within a graphic design (e.g., document and web designs) with constraints representing design intentions. Although recent diffusion-based models have achieved state-of-the-art FID scores, they tend to exhibit more pronounced misalignment compared to earlier transformer-based models. In this work, we propose the $\textbf{LA}$yout $\textbf{C}$onstraint diffusion mod$\textbf{E}$l (LACE), a unified model to handle a broad range of layout generation tasks, such as arranging elements with specified attributes and refining or completing a coarse layout design. The model is based on continuous diffusion models. Compared with existing methods that use discrete diffusion models, continuous state-space design can enable the incorporation of differentiable aesthetic constraint functions in training. For conditional generation, we introduce conditions via masked input. Extensive experiment results show that LACE produces high-quality layouts and outperforms existing state-of-the-art baselines.


Long-Term Ad Memorability: Understanding and Generating Memorable Ads

arXiv.org Artificial Intelligence

Marketers spend billions of dollars on advertisements but to what end? At the time of purchase, if customers cannot recognize the brand for which they saw an ad, the money spent on the ad is essentially wasted. Despite its importance in marketing, until now, there has been no study on the memorability of ads in the ML literature. Most studies have been conducted on short-term recall (<5 mins) on specific content types like object and action videos. On the other hand, the advertising industry only cares about long-term memorability, and ads are almost always highly multimodal, depicting a story through its different modalities. With this motivation, we release the first large-scale memorability dataset, LAMDBA, consisting of 1749 participants and 2205 ads covering 276 brands. Running statistical tests over different participant subpopulations and ad types, we find many interesting insights into what makes an ad memorable. For e.g., we find that brands that use commercials with fast-moving scenes are more memorable than those with slower scenes (p=8e-10) and that people who use ad-blockers remember fewer ads than those who don't (p=5e-3). Next, to simulate the memorability of marketing materials for a particular audience, we present a novel model, Henry, trained to leverage real-world knowledge of LLMs and visual knowledge to predict the memorability. We test Henry on all the prominent memorability datasets in literature (both images and videos) and achieve state-of-the-art performance across all of them. Henry shows strong generalization showing better results in 0-shot on unseen datasets. Next, we propose the task of memorable ad generation and release a large-scale ad dataset, UltraLAMBDA, consisting of 4 million ads with their Henry-assigned memorability scores. We show that aligning Henry to generate memorable content improves memorability scores by more than 25%.


Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels

arXiv.org Artificial Intelligence

Learning from noisy labels is an important and long-standing problem in machine learning for real applications. One of the main research lines focuses on learning a label corrector to purify potential noisy labels. However, these methods typically rely on strict assumptions and are limited to certain types of label noise. In this paper, we reformulate the label-noise problem from a generative-model perspective, $\textit{i.e.}$, labels are generated by gradually refining an initial random guess. This new perspective immediately enables existing powerful diffusion models to seamlessly learn the stochastic generative process. Once the generative uncertainty is modeled, we can perform classification inference using maximum likelihood estimation of labels. To mitigate the impact of noisy labels, we propose the $\textbf{L}$abel-$\textbf{R}$etrieval-$\textbf{A}$ugmented (LRA) diffusion model, which leverages neighbor consistency to effectively construct pseudo-clean labels for diffusion training. Our model is flexible and general, allowing easy incorporation of different types of conditional information, $\textit{e.g.}$, use of pre-trained models, to further boost model performance. Extensive experiments are conducted for evaluation. Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets. Remarkably, by incorporating conditional information from the powerful CLIP model, our method can boost the current SOTA accuracy by 10-20 absolute points in many cases.