Goto

Collaborating Authors

Chen, Changyou


Discretized Bottleneck in VAE: Posterior-Collapse-Free Sequence-to-Sequence Learning

arXiv.org Machine Learning

Variational autoencoders (VAEs) are important tools in end-to-end representation learning. VAEs can capture complex data distributions and have been applied extensively in many natural-language-processing (NLP) tasks. However, a common pitfall in sequence-to-sequence learning with VAEs is the posterior-collapse issue in latent space, wherein the model tends to ignore latent variables when a strong auto-regressive decoder is implemented. In this paper, we propose a principled approach to eliminate this issue by applying a discretized bottleneck in the latent space. Specifically, we impose a shared discrete latent space where each input is learned to choose a combination of shared latent atoms as its latent representation. Compared with VAEs employing continuous latent variables, our model endows more promising capability in modeling underlying semantics of discrete sequences and can thus provide more interpretative latent structures. Empirically, we demonstrate the efficiency and effectiveness of our model on a broad range of tasks, including language modeling, unaligned text style transfer, dialog response generation, and neural machine translation.


Feature Quantization Improves GAN Training

arXiv.org Machine Learning

The instability in GAN training has been a long-standing problem despite remarkable research efforts. We identify that instability issues stem from difficulties of performing feature matching with mini-batch statistics, due to a fragile balance between the fixed target distribution and the progressively generated distribution. In this work, we propose Feature Quantization (FQ) for the discriminator, to embed both true and fake data samples into a shared discrete space. The quantized values of FQ are constructed as an evolving dictionary, which is consistent with feature statistics of the recent distribution history. Hence, FQ implicitly enables robust feature matching in a compact space. Our method can be easily plugged into existing GAN models, with little computational overhead in training. We apply FQ to 3 representative GAN models on 9 benchmarks: BigGAN for image generation, StyleGAN for face synthesis, and U-GAT-IT for unsupervised image-to-image translation. Extensive experimental results show that the proposed FQ-GAN can improve the FID scores of baseline methods by a large margin on a variety of tasks, achieving new state-of-the-art performance.


Text-Based Interactive Recommendation via Constraint-Augmented Reinforcement Learning

Neural Information Processing Systems

Text-based interactive recommendation provides richer user preferences and has demonstrated advantages over traditional interactive recommender systems. However, recommendations can easily violate preferences of users from their past natural-language feedback, since the recommender needs to explore new items for further improvement. To alleviate this issue, we propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time. Specifically, we leverage a discriminator to detect recommendations violating user historical preference, which is incorporated into the standard RL objective of maximizing expected cumulative future rewards. Our proposed framework is general and is further extended to the task of constrained text generation.


Certified Adversarial Robustness with Additive Noise

Neural Information Processing Systems

The existence of adversarial data examples has drawn significant attention in the deep-learning community; such data are seemingly minimally perturbed relative to the original data, but lead to very different outputs from a deep-learning algorithm. Although a significant body of work on developing defense models has been developed, most such models are heuristic and are often vulnerable to adaptive attacks. Defensive methods that provide theoretical robustness guarantees have been studied intensively, yet most fail to obtain non-trivial robustness when a large-scale model and data are present. To address these limitations, we introduce a framework that is scalable and provides certified bounds on the norm of the input manipulation for constructing adversarial examples. We establish a connection between robustness against adversarial perturbation and additive random noise, and propose a training strategy that can significantly improve the certified bounds.


ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching

Neural Information Processing Systems

We investigate the non-identifiability issues associated with bidirectional adversarial training for joint distribution matching. Within a framework of conditional entropy, we propose both adversarial and non-adversarial approaches to learn desirable matched joint distributions for unsupervised and supervised tasks. We unify a broad family of adversarial models as joint distribution matching problems. Our approach stabilizes learning of unsupervised bidirectional adversarial learning methods. Further, we introduce an extension for semi-supervised learning tasks.


Stochastic Gradient MCMC with Stale Gradients

Neural Information Processing Systems

Stochastic gradient MCMC (SG-MCMC) has played an important role in large-scale Bayesian learning, with well-developed theoretical convergence properties. In such applications of SG-MCMC, it is becoming increasingly popular to employ distributed systems, where stochastic gradients are computed based on some outdated parameters, yielding what are termed stale gradients. While stale gradients could be directly used in SG-MCMC, their impact on convergence properties has not been well studied. In this paper we develop theory to show that while the bias and MSE of an SG-MCMC algorithm depend on the staleness of stochastic gradients, its estimation variance (relative to the expected estimate, based on a prescribed number of samples) is independent of it. In a simple Bayesian distributed system with SG-MCMC, where stale gradients are computed asynchronously by a set of workers, our theory indicates a linear speedup on the decrease of estimation variance w.r.t. the number of workers.


Bayesian Sampling Using Stochastic Gradient Thermostats

Neural Information Processing Systems

Dynamics-based sampling methods, such as Hybrid Monte Carlo (HMC) and Langevin dynamics (LD), are commonly used to sample target distributions. Recently, such approaches have been combined with stochastic gradient techniques to increase sampling efficiency when dealing with large datasets. An outstanding problem with this approach is that the stochastic gradient introduces an unknown amount of noise which can prevent proper sampling after discretization. To remedy this problem, we show that one can leverage a small number of additional variables in order to stabilize momentum fluctuations induced by the unknown noise. Our method is inspired by the idea of a thermostat in statistical physics and is justified by a general theory.


On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators

Neural Information Processing Systems

Recent advances in Bayesian learning with large-scale data have witnessed emergence of stochastic gradient MCMC algorithms (SG-MCMC), such as stochastic gradient Langevin dynamics (SGLD), stochastic gradient Hamiltonian MCMC (SGHMC), and the stochastic gradient thermostat. While finite-time convergence properties of the SGLD with a 1st-order Euler integrator have recently been studied, corresponding theory for general SG-MCMCs has not been explored. In this paper we consider general SG-MCMCs with high-order integrators, and develop theory to analyze finite-time convergence properties and their asymptotic invariant measures. Our theoretical results show faster convergence rates and more accurate invariant measures for SG-MCMCs with higher-order integrators. For example, with the proposed efficient 2nd-order symmetric splitting integrator, the mean square error (MSE) of the posterior average for the SGHMC achieves an optimal convergence rate of $L {-4/5}$ at $L$ iterations, compared to $L {-2/3}$ for the SGHMC and SGLD with 1st-order Euler integrators.


Robust Bayesian Max-Margin Clustering

Neural Information Processing Systems

We present max-margin Bayesian clustering (BMC), a general and robust framework that incorporates the max-margin criterion into Bayesian clustering models, as well as two concrete models of BMC to demonstrate its flexibility and effectiveness in dealing with different clustering tasks. The Dirichlet process max-margin Gaussian mixture is a nonparametric Bayesian clustering model that relaxes the underlying Gaussian assumption of Dirichlet process Gaussian mixtures by incorporating max-margin posterior constraints, and is able to infer the number of clusters from data. We further extend the ideas to present max-margin clustering topic model, which can learn the latent topic representation of each document while at the same time cluster documents in the max-margin fashion. Extensive experiments are performed on a number of real datasets, and the results indicate superior clustering performance of our methods compared to related baselines. Papers published at the Neural Information Processing Systems Conference.


KernelNet: A Data-Dependent Kernel Parameterization for Deep Generative Modeling

arXiv.org Machine Learning

Learning with kernels is an often resorted tool in modern machine learning. Standard approaches for this type of learning use a predefined kernel that requires careful selection of hyperparameters. To mitigate this burden, we propose in this paper a framework to construct and learn a data-dependent kernel based on random features and implicit spectral distributions (Fourier transform of the kernel) parameterized by deep neural networks. We call the constructed network {\em KernelNet}, and apply it for deep generative modeling in various scenarios, including variants of the MMD-GAN and an implicit Variational Autoencoder (VAE), the two popular learning paradigms in deep generative models. Extensive experiments show the advantages of the proposed KernelNet, consistently achieving better performance compared to related methods.