Bogdan, Paul
HDLCoRe: A Training-Free Framework for Mitigating Hallucinations in LLM-Generated HDL
Ping, Heng, Li, Shixuan, Zhang, Peiyu, Cheng, Anzhe, Duan, Shukai, Kanakaris, Nikos, Xiao, Xiongye, Yang, Wei, Nazarian, Shahin, Irimia, Andrei, Bogdan, Paul
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, when applied to hardware description languages (HDL), these models exhibit significant limitations due to data scarcity, resulting in hallucinations and incorrect code generation. To address these challenges, we propose HDLCoRe, a training-free framework that enhances LLMs' HDL generation capabilities through prompt engineering techniques and retrieval-augmented generation (RAG). Our approach consists of two main components: (1) an HDL-aware Chain-of-Thought (CoT) prompting technique with self-verification that classifies tasks by complexity and type, incorporates domainspecific knowledge, and guides LLMs through step-by-step self-simulation for error correction; and (2) a two-stage heterogeneous RAG system that addresses formatting inconsistencies through key component extraction and efficiently retrieves relevant HDL examples through sequential filtering and re-ranking. HDLCoRe eliminates the need for model fine-tuning while substantially improving LLMs' HDL generation capabilities. Experimental results demonstrate that our framework achieves superior performance on the RTLLM2.0 With the rapid advancement of semiconductor technology, the design of very large-scale integration (VLSI) has become increasingly vital across industries Huang et al. (2021). Hardware description language (HDL) code, as the foundation of VLSI design, plays a critical role in defining the circuit architecture and functionality Palnitkar (2003). In recent years, large language models (LLMs) have experienced explosive growth and demonstrated extraordinary capabilities in many aspects Kanakaris et al. (2025); Li et al. (2025), especially in automated code generation Brown et al. (2020); Chen et al. (2021).
MaskAttn-UNet: A Mask Attention-Driven Framework for Universal Low-Resolution Image Segmentation
Cheng, Anzhe, Yin, Chenzhong, Chang, Yu, Ping, Heng, Li, Shixuan, Nazarian, Shahin, Bogdan, Paul
Low-resolution image segmentation is crucial in real-world applications such as robotics, augmented reality, and large-scale scene understanding, where high-resolution data is often unavailable due to computational constraints. To address this challenge, we propose MaskAttn-UNet, a novel segmentation framework that enhances the traditional U-Net architecture via a mask attention mechanism. Our model selectively emphasizes important regions while suppressing irrelevant backgrounds, thereby improving segmentation accuracy in cluttered and complex scenes. Unlike conventional U-Net variants, MaskAttn-UNet effectively balances local feature extraction with broader contextual awareness, making it particularly well-suited for low-resolution inputs. We evaluate our approach on three benchmark datasets with input images rescaled to 128x128 and demonstrate competitive performance across semantic, instance, and panoptic segmentation tasks. Our results show that MaskAttn-UNet achieves accuracy comparable to state-of-the-art methods at significantly lower computational cost than transformer-based models, making it an efficient and scalable solution for low-resolution segmentation in resource-constrained scenarios.
Network-informed Prompt Engineering against Organized Astroturf Campaigns under Extreme Class Imbalance
Kanakaris, Nikos, Ping, Heng, Xiao, Xiongye, Ahmed, Nesreen K., Luceri, Luca, Ferrara, Emilio, Bogdan, Paul
Detecting organized political campaigns is of paramount importance in fighting against disinformation on social media. Existing approaches for the identification of such organized actions employ techniques mostly from network science, graph machine learning and natural language processing. Their ultimate goal is to analyze the relationships and interactions (e.g. re-posting) among users and the textual similarities of their posts. Despite their effectiveness in recognizing astroturf campaigns, these methods face significant challenges, notably the class imbalance in available training datasets. To mitigate this issue, recent methods usually resort to data augmentation or increasing the number of positive samples, which may not always be feasible or sufficient in real-world settings. Following a different path, in this paper, we propose a novel framework for identifying astroturf campaigns based solely on large language models (LLMs), introducing a Balanced Retrieval-Augmented Generation (Balanced RAG) component. Our approach first gives both textual information concerning the posts (in our case tweets) and the user interactions of the social network as input to a language model. Then, through prompt engineering and the proposed Balanced RAG method, it effectively detects coordinated disinformation campaigns on X (Twitter). The proposed framework does not require any training or fine-tuning of the language model. Instead, by strategically harnessing the strengths of prompt engineering and Balanced RAG, it facilitates LLMs to overcome the effects of class imbalance and effectively identify coordinated political campaigns. The experimental results demonstrate that by incorporating the proposed prompt engineering and Balanced RAG methods, our framework outperforms the traditional graph-based baselines, achieving 2x-3x improvements in terms of precision, recall and F1 scores.
ClimateLLM: Efficient Weather Forecasting via Frequency-Aware Large Language Models
Li, Shixuan, Yang, Wei, Zhang, Peiyu, Xiao, Xiongye, Cao, Defu, Qin, Yuehan, Zhang, Xiaole, Zhao, Yue, Bogdan, Paul
Weather forecasting is crucial for public safety, disaster prevention and mitigation, agricultural production, and energy management, with global relevance. Although deep learning has significantly advanced weather prediction, current methods face critical limitations: (i) they often struggle to capture both dynamic temporal dependencies and short-term abrupt changes, making extreme weather modeling difficult; (ii) they incur high computational costs due to extensive training and resource requirements; (iii) they have limited adaptability to multi-scale frequencies, leading to challenges when separating global trends from local fluctuations. To address these issues, we propose ClimateLLM, a foundation model for weather forecasting. It captures spatiotemporal dependencies via a cross-temporal and cross-spatial collaborative modeling framework that integrates Fourier-based frequency decomposition with Large Language Models (LLMs) to strengthen spatial and temporal modeling. Our framework uses a Mixture-of-Experts (MoE) mechanism that adaptively processes different frequency components, enabling efficient handling of both global signals and localized extreme events. In addition, we introduce a cross-temporal and cross-spatial dynamic prompting mechanism, allowing LLMs to incorporate meteorological patterns across multiple scales effectively. Extensive experiments on real-world datasets show that ClimateLLM outperforms state-of-the-art approaches in accuracy and efficiency, as a scalable solution for global weather forecasting. For almost half a century, numerical weather prediction (NWP) methods that rely on solving atmospheric partial differential equations have formed the backbone of operational forecasting Kalnay (2002); Lynch (2008); Bauer et al. (2015); Nguyen et al. (2024).
End-to-End Learning Framework for Solving Non-Markovian Optimal Control
Zhang, Xiaole, Zhang, Peiyu, Xiao, Xiongye, Li, Shixuan, Tzoumas, Vasileios, Gupta, Vijay, Bogdan, Paul
Integer-order calculus often falls short in capturing the long-range dependencies and memory effects found in many real-world processes. Fractional calculus addresses these gaps via fractional-order integrals and derivatives, but fractional-order dynamical systems pose substantial challenges in system identification and optimal control due to the lack of standard control methodologies. In this paper, we theoretically derive the optimal control via linear quadratic regulator (LQR) for fractional-order linear time-invariant (FOLTI) systems and develop an end-to-end deep learning framework based on this theoretical foundation. Our approach establishes a rigorous mathematical model, derives analytical solutions, and incorporates deep learning to achieve data-driven optimal control of FOLTI systems. Our key contributions include: (i) proposing an innovative system identification method control strategy for FOLTI systems, (ii) developing the first end-to-end data-driven learning framework, Fractional-Order Learning for Optimal Control (FOLOC), that learns control policies from observed trajectories, and (iii) deriving a theoretical analysis of sample complexity to quantify the number of samples required for accurate optimal control in complex real-world problems. Experimental results indicate that our method accurately approximates fractional-order system behaviors without relying on Gaussian noise assumptions, pointing to promising avenues for advanced optimal control.
Analyzing Neural Network Robustness Using Graph Curvature
Tan, Shuhang, Sia, Jayson, Bogdan, Paul, Ivanov, Radoslav
This paper presents a new look at the neural network (NN) robustness problem, from the point of view of graph theory analysis, specifically graph curvature. Graph curvature (e.g., Ricci curvature) has been used to analyze system dynamics and identify bottlenecks in many domains, including road traffic analysis and internet routing. We define the notion of neural Ricci curvature and use it to identify bottleneck NN edges that are heavily used to ``transport data" to the NN outputs. We provide an evaluation on MNIST that illustrates that such edges indeed occur more frequently for inputs where NNs are less robust. These results will serve as the basis for an alternative method of robust training, by minimizing the number of bottleneck edges.
Multi-scale Generative Modeling for Fast Sampling
Xiao, Xiongye, Li, Shixuan, Huang, Luzhe, Liu, Gengshuo, Nguyen, Trung-Kien, Huang, Yi, Chang, Di, Kochenderfer, Mykel J., Bogdan, Paul
While working within the spatial domain can pose problems associated with ill-conditioned scores caused by power-law decay, recent advances in diffusion-based generative models have shown that transitioning to the wavelet domain offers a promising alternative. However, within the wavelet domain, we encounter unique challenges, especially the sparse representation of high-frequency coefficients, which deviates significantly from the Gaussian assumptions in the diffusion process. To this end, we propose a multi-scale generative modeling in the wavelet domain that employs distinct strategies for handling low and high-frequency bands. In the wavelet domain, we apply score-based generative modeling with well-conditioned scores for low-frequency bands, while utilizing a multi-scale generative adversarial learning for high-frequency bands. As supported by the theoretical analysis and experimental results, our model significantly improve performance and reduce the number of trainable parameters, sampling steps, and time.
Multi-scale Conditional Generative Modeling for Microscopic Image Restoration
Huang, Luzhe, Xiao, Xiongye, Li, Shixuan, Sun, Jiawen, Huang, Yi, Ozcan, Aydogan, Bogdan, Paul
The advance of diffusion-based generative models in recent years has revolutionized state-of-the-art (SOTA) techniques in a wide variety of image analysis and synthesis tasks, whereas their adaptation on image restoration, particularly within computational microscopy remains theoretically and empirically underexplored. In this research, we introduce a multi-scale generative model that enhances conditional image restoration through a novel exploitation of the Brownian Bridge process within wavelet domain. By initiating the Brownian Bridge diffusion process specifically at the lowest-frequency subband and applying generative adversarial networks at subsequent multi-scale high-frequency subbands in the wavelet domain, our method provides significant acceleration during training and sampling while sustaining a high image generation quality and diversity on par with SOTA diffusion models. Experimental results on various computational microscopy and imaging tasks confirm our method's robust performance and its considerable reduction in its sampling steps and time. This pioneering technique offers an efficient image restoration framework that harmonizes efficiency with quality, signifying a major stride in incorporating cutting-edge generative models into computational microscopy workflows.
Exploring Edge Probability Graph Models Beyond Edge Independency: Concepts, Analyses, and Algorithms
Bu, Fanchen, Yang, Ruochen, Bogdan, Paul, Shin, Kijung
Desirable random graph models (RGMs) should (i) be tractable so that we can compute and control graph statistics, and (ii) generate realistic structures such as high clustering (i.e., high subgraph densities). A popular category of RGMs (e.g., Erdos-Renyi and stochastic Kronecker) outputs edge probabilities, and we need to realize (i.e., sample from) the edge probabilities to generate graphs. Typically, each edge (in)existence is assumed to be determined independently. However, with edge independency, RGMs theoretically cannot produce high subgraph densities unless they "replicate" input graphs. In this work, we explore realization beyond edge independence that can produce more realistic structures while ensuring high tractability. Specifically, we propose edge-dependent realization schemes called binding and derive closed-form tractability results on subgraph (e.g., triangle) densities in graphs generated with binding. We propose algorithms for graph generation with binding and parameter fitting of binding. We empirically validate that binding exhibits high tractability and generates realistic graphs with high clustering, significantly improving upon existing RGMs assuming edge independency.
A structure-aware framework for learning device placements on computation graphs
Duan, Shukai, Ping, Heng, Kanakaris, Nikos, Xiao, Xiongye, Zhang, Peiyu, Kyriakis, Panagiotis, Ahmed, Nesreen K., Ma, Guixiang, Capota, Mihai, Nazarian, Shahin, Willke, Theodore L., Bogdan, Paul
Existing approaches for device placement ignore the topological features of computation graphs and rely mostly on heuristic methods for graph partitioning. At the same time, they either follow a grouper-placer or an encoder-placer architecture, which requires understanding the interaction structure between code operations. To bridge the gap between encoder-placer and grouper-placer techniques, we propose a novel framework for the task of device placement, relying on smaller computation graphs extracted from the OpenVINO toolkit using reinforcement learning. The framework consists of five steps, including graph coarsening, node representation learning and policy optimization. It facilitates end-to-end training and takes into consideration the directed and acyclic nature of the computation graphs. We also propose a model variant, inspired by graph parsing networks and complex network analysis, enabling graph representation learning and personalized graph partitioning jointly, using an unspecified number of groups. To train the entire framework, we utilize reinforcement learning techniques by employing the execution time of the suggested device placements to formulate the reward. We demonstrate the flexibility and effectiveness of our approach through multiple experiments with three benchmark models, namely Inception-V3, ResNet, and BERT. The robustness of the proposed framework is also highlighted through an ablation study. The suggested placements improve the inference speed for the benchmark models by up to $58.2\%$ over CPU execution and by up to $60.24\%$ compared to other commonly used baselines.