Goto

Collaborating Authors

 Azizan, Navid


Activation-Informed Merging of Large Language Models

arXiv.org Artificial Intelligence

Model merging, a method that combines the parameters and embeddings of multiple fine-tuned large language models (LLMs), offers a promising approach to enhance model performance across various tasks while maintaining computational efficiency. This paper introduces Activation-Informed Merging (AIM), a technique that integrates the information from the activation space of LLMs into the merging process to improve performance and robustness. AIM is designed as a flexible, complementary solution that is applicable to any existing merging method. It aims to preserve critical weights from the base model, drawing on principles from continual learning~(CL) and model compression. Utilizing a task-agnostic calibration set, AIM selectively prioritizes essential weights during merging. We empirically demonstrate that AIM significantly enhances the performance of merged models across multiple benchmarks. Our findings suggest that considering the activation-space information can provide substantial advancements in the model merging strategies for LLMs with up to 40\% increase in benchmark performance.


In-Context Learning of Polynomial Kernel Regression in Transformers with GLU Layers

arXiv.org Artificial Intelligence

Transformer-based models have demonstrated remarkable ability in in-context learning (ICL), where they can adapt to unseen tasks from a prompt with a few examples, without requiring parameter updates. Recent research has provided insight into how linear Transformers can perform ICL by implementing gradient descent estimators. In particular, it has been shown that the optimal linear self-attention (LSA) mechanism can implement one step of gradient descent with respect to a linear least-squares objective when trained on random linear regression tasks. However, the theoretical understanding of ICL for nonlinear function classes remains limited. In this work, we address this gap by first showing that LSA is inherently restricted to solving linear least-squares objectives and thus, the solutions in prior works cannot readily extend to nonlinear ICL tasks. To overcome this limitation, drawing inspiration from modern architectures, we study a mechanism that combines LSA with GLU-like feed-forward layers and show that this allows the model to perform one step of gradient descent on a polynomial kernel regression. Further, we characterize the scaling behavior of the resulting Transformer model, highlighting the necessary model size to effectively handle quadratic ICL tasks. Our findings highlight the distinct roles of attention and feed-forward layers in nonlinear ICL and identify key challenges when extending ICL to nonlinear function classes.


Identifying Reliable Predictions in Detection Transformers

arXiv.org Artificial Intelligence

DEtection TRansformer (DETR) has emerged as a promising architecture for object detection, offering an end-to-end prediction pipeline. In practice, however, DETR generates hundreds of predictions that far outnumber the actual number of objects present in an image. This raises the question: can we trust and use all of these predictions? Addressing this concern, we present empirical evidence highlighting how different predictions within the same image play distinct roles, resulting in varying reliability levels across those predictions. More specifically, while multiple predictions are often made for a single object, our findings show that most often one such prediction is well-calibrated, and the others are poorly calibrated. Based on these insights, we demonstrate identifying a reliable subset of DETR's predictions is crucial for accurately assessing the reliability of the model at both object and image levels. Building on this viewpoint, we first tackle the shortcomings of widely used performance and calibration metrics, such as average precision and various forms of expected calibration error. Specifically, they are inadequate for determining which subset of DETR's predictions should be trusted and utilized. In response, we present Object-level Calibration Error (OCE), which is capable of assessing the calibration quality both across different models and among various configurations within a specific model. As a final contribution, we introduce a post hoc Uncertainty Quantification (UQ) framework that predicts the accuracy of the model on a per-image basis. By contrasting the average confidence scores of positive (i.e., likely to be matched) and negative predictions determined by OCE, the framework assesses the reliability of the DETR model for each test image.


Safe Multi-Agent Reinforcement Learning with Convergence to Generalized Nash Equilibrium

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) has achieved notable success in cooperative tasks, demonstrating impressive performance and scalability. However, deploying MARL agents in real-world applications presents critical safety challenges. Current safe MARL algorithms are largely based on the constrained Markov decision process (CMDP) framework, which enforces constraints only on discounted cumulative costs and lacks an all-time safety assurance. Moreover, these methods often overlook the feasibility issue (the system will inevitably violate state constraints within certain regions of the constraint set), resulting in either suboptimal performance or increased constraint violations. To address these challenges, we propose a novel theoretical framework for safe MARL with $\textit{state-wise}$ constraints, where safety requirements are enforced at every state the agents visit. To resolve the feasibility issue, we leverage a control-theoretic notion of the feasible region, the controlled invariant set (CIS), characterized by the safety value function. We develop a multi-agent method for identifying CISs, ensuring convergence to a Nash equilibrium on the safety value function. By incorporating CIS identification into the learning process, we introduce a multi-agent dual policy iteration algorithm that guarantees convergence to a generalized Nash equilibrium in state-wise constrained cooperative Markov games, achieving an optimal balance between feasibility and performance. Furthermore, for practical deployment in complex high-dimensional systems, we propose $\textit{Multi-Agent Dual Actor-Critic}$ (MADAC), a safe MARL algorithm that approximates the proposed iteration scheme within the deep RL paradigm. Empirical evaluations on safe MARL benchmarks demonstrate that MADAC consistently outperforms existing methods, delivering much higher rewards while reducing constraint violations.


Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection

arXiv.org Artificial Intelligence

Attention mechanisms have revolutionized several domains of artificial intelligence, such as natural language processing and computer vision, by enabling models to selectively focus on relevant parts of the input data. While recent work has characterized the optimization dynamics of gradient descent (GD) in attention-based models and the structural properties of its preferred solutions, less is known about more general optimization algorithms such as mirror descent (MD). In this paper, we investigate the convergence properties and implicit biases of a family of MD algorithms tailored for softmax attention mechanisms, with the potential function chosen as the $p$-th power of the $\ell_p$-norm. Specifically, we show that these algorithms converge in direction to a generalized hard-margin SVM with an $\ell_p$-norm objective when applied to a classification problem using a softmax attention model. Notably, our theoretical results reveal that the convergence rate is comparable to that of traditional GD in simpler models, despite the highly nonlinear and nonconvex nature of the present problem. Additionally, we delve into the joint optimization dynamics of the key-query matrix and the decoder, establishing conditions under which this complex joint optimization converges to their respective hard-margin SVM solutions. Lastly, our numerical experiments on real data demonstrate that MD algorithms improve generalization over standard GD and excel in optimal token selection.


Hard-Constrained Neural Networks with Universal Approximation Guarantees

arXiv.org Machine Learning

Incorporating prior knowledge or specifications of input-output relationships into machine learning models has gained significant attention, as it enhances generalization from limited data and leads to conforming outputs. However, most existing approaches use soft constraints by penalizing violations through regularization, which offers no guarantee of constraint satisfaction -- an essential requirement in safety-critical applications. On the other hand, imposing hard constraints on neural networks may hinder their representational power, adversely affecting performance. To address this, we propose HardNet, a practical framework for constructing neural networks that inherently satisfy hard constraints without sacrificing model capacity. Specifically, we encode affine and convex hard constraints, dependent on both inputs and outputs, by appending a differentiable projection layer to the network's output. This architecture allows unconstrained optimization of the network parameters using standard algorithms while ensuring constraint satisfaction by construction. Furthermore, we show that HardNet retains the universal approximation capabilities of neural networks. We demonstrate the versatility and effectiveness of HardNet across various applications: fitting functions under constraints, learning optimization solvers, optimizing control policies in safety-critical systems, and learning safe decision logic for aircraft systems.


Adapting Differentially Private Synthetic Data to Relational Databases

arXiv.org Artificial Intelligence

Relational databases play a pivotal role in modern information systems and business operations due to their efficiency in managing structured data [39]. According to a Kaggle survey [23], 65.5% of users worked extensively with relational data. Additionally, the majority of leading database management systems (e.g., MySQL and Oracle) are built on relational database principles [35]. These systems organize data into multiple tables, each representing a specific entity, and the relationships between tables delineate the connections between these entities. However, the widespread use of relational databases also carries a significant risk of privacy leakage.


Private Synthetic Data Meets Ensemble Learning

arXiv.org Artificial Intelligence

When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop due to the distribution shift between synthetic and real data. In this paper, we introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data. We generate multiple synthetic datasets by applying a differential privacy (DP) mechanism several times in parallel and then ensemble the downstream models trained on these datasets. While each synthetic dataset might deviate more from the real data distribution, they collectively increase sample diversity. This may enhance the robustness of downstream models against distribution shifts. Our extensive experiments reveal that while ensembling does not enhance downstream performance (compared with training a single model) for models trained on synthetic data generated by marginal-based or workload-based DP mechanisms, our proposed ensemble strategy does improve the performance for models trained using GAN-based DP mechanisms in terms of both accuracy and calibration of downstream models.


A Unified Approach to Controlling Implicit Regularization via Mirror Descent

arXiv.org Artificial Intelligence

Inspired by the remarkable success of deep neural networks, there has been significant interest in understanding the generalization performance of overparameterized models. Substantial efforts have been invested in characterizing how optimization algorithms impact generalization through their "preferred" solutions, a phenomenon commonly referred to as implicit regularization. In particular, it has been argued that gradient descent (GD) induces an implicit $\ell_2$-norm regularization in regression and classification problems. However, the implicit regularization of different algorithms are confined to either a specific geometry or a particular class of learning problems, indicating a gap in a general approach for controlling the implicit regularization. To address this, we present a unified approach using mirror descent (MD), a notable generalization of GD, to control implicit regularization in both regression and classification settings. More specifically, we show that MD with the general class of homogeneous potential functions converges in direction to a generalized maximum-margin solution for linear classification problems, thereby answering a long-standing question in the classification setting. Further, we show that MD can be implemented efficiently and under suitable conditions, enjoys fast convergence. Through comprehensive experiments, we demonstrate that MD is a versatile method to produce learned models with different regularizers, which in turn have different generalization performances.


Learning Control-Oriented Dynamical Structure from Data

arXiv.org Artificial Intelligence

Even for known nonlinear dynamical systems, feedback controller synthesis is a difficult problem that often requires leveraging the particular structure of the dynamics to induce a stable closed-loop system. For general nonlinear models, including those fit to data, there may not be enough known structure to reliably synthesize a stabilizing feedback controller. In this paper, we discuss a state-dependent nonlinear tracking controller formulation based on a state-dependent Riccati equation for general nonlinear control-affine systems. This formulation depends on a nonlinear factorization of the system of vector fields defining the control-affine dynamics, which always exists under mild smoothness assumptions. We propose a method for learning this factorization from a finite set of data. On a variety of simulated nonlinear dynamical systems, we empirically demonstrate the efficacy of learned versions of this controller in stable trajectory tracking. Alongside our learning method, we evaluate recent ideas in jointly learning a controller and stabilizability certificate for known dynamical systems; we show experimentally that such methods can be frail in comparison.