Goto

Collaborating Authors

 Antonova, Rika


Unpacking Failure Modes of Generative Policies: Runtime Monitoring of Consistency and Progress

arXiv.org Artificial Intelligence

Robot behavior policies trained via imitation learning are prone to failure under conditions that deviate from their training data. Thus, algorithms that monitor learned policies at test time and provide early warnings of failure are necessary to facilitate scalable deployment. We propose Sentinel, a runtime monitoring framework that splits the detection of failures into two complementary categories: 1) Erratic failures, which we detect using statistical measures of temporal action consistency, and 2) task progression failures, where we use Vision Language Models (VLMs) to detect when the policy confidently and consistently takes actions that do not solve the task. Our approach has two key strengths. First, because learned policies exhibit diverse failure modes, combining complementary detectors leads to significantly higher accuracy at failure detection. Second, using a statistical temporal action consistency measure ensures that we quickly detect when multimodal, generative policies exhibit erratic behavior at negligible computational cost. In contrast, we only use VLMs to detect failure modes that are less time-sensitive. We demonstrate our approach in the context of diffusion policies trained on robotic mobile manipulation domains in both simulation and the real world. By unifying temporal consistency detection and VLM runtime monitoring, Sentinel detects 18% more failures than using either of the two detectors alone and significantly outperforms baselines, thus highlighting the importance of assigning specialized detectors to complementary categories of failure. Qualitative results are made available at https://sites.google.com/stanford.edu/sentinel.


EquiBot: SIM(3)-Equivariant Diffusion Policy for Generalizable and Data Efficient Learning

arXiv.org Artificial Intelligence

Building effective imitation learning methods that enable robots to learn from limited data and still generalize across diverse real-world environments is a long-standing problem in robot learning. We propose EquiBot, a robust, data-efficient, and generalizable approach for robot manipulation task learning. Our approach combines SIM(3)-equivariant neural network architectures with diffusion models. This ensures that our learned policies are invariant to changes in scale, rotation, and translation, enhancing their applicability to unseen environments while retaining the benefits of diffusion-based policy learning such as multi-modality and robustness. We show in a suite of 6 simulation tasks that our proposed method reduces the data requirements and improves generalization to novel scenarios. In the real world, we show with in total 10 variations of 6 mobile manipulation tasks that our method can easily generalize to novel objects and scenes after learning from just 5 minutes of human demonstrations in each task.


EquivAct: SIM(3)-Equivariant Visuomotor Policies beyond Rigid Object Manipulation

arXiv.org Artificial Intelligence

If a robot masters folding a kitchen towel, we would also expect it to master folding a beach towel. However, existing works for policy learning that rely on data set augmentations are still limited in achieving this level of generalization. Our insight is to add equivariance to both the visual object representation and policy architecture. We propose EquivAct which utilizes SIM(3)-equivariant network structures that guarantee generalization across all possible object translations, 3D rotations, and scales by construction. Training of EquivAct is done in two phases. We first pre-train a SIM(3)-equivariant visual representation on simulated scene point clouds. Then, we learn a SIM(3)-equivariant visuomotor policy on top of the pre-trained visual representation using a small amount of source task demonstrations. We demonstrate that after training, the learned policy directly transfers to objects that substantially differ in scale, position and orientation from the source demonstrations. In simulation, we evaluate our method in three manipulation tasks involving deformable and articulated objects thereby going beyond the typical rigid object manipulation tasks that prior works considered. We show that our method outperforms prior works that do not use equivariant architectures or do not use our contrastive pre-training procedure. We also show quantitative and qualitative experiments on three real robot tasks, where the robot watches twenty demonstrations of a tabletop task and transfers zero-shot to a mobile manipulation task in a much larger setup. Project website: https://equivact.github.io


TidyBot: Personalized Robot Assistance with Large Language Models

arXiv.org Artificial Intelligence

For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people's preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-based planning and perception with the few-shot summarization capabilities of large language models (LLMs) to infer generalized user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.


In-Hand Manipulation of Unknown Objects with Tactile Sensing for Insertion

arXiv.org Artificial Intelligence

In this paper, we present a method to manipulate unknown objects in-hand using tactile sensing without relying on a known object model. In many cases, vision-only approaches may not be feasible; for example, due to occlusion in cluttered spaces. We address this limitation by introducing a method to reorient unknown objects using tactile sensing. It incrementally builds a probabilistic estimate of the object shape and pose during task-driven manipulation. Our approach uses Bayesian optimization to balance exploration of the global object shape with efficient task completion. To demonstrate the effectiveness of our method, we apply it to a simulated Tactile-Enabled Roller Grasper, a gripper that rolls objects in hand while collecting tactile data. We evaluate our method on an insertion task with randomly generated objects and find that it reliably reorients objects while significantly reducing the exploration time.


Learning Tool Morphology for Contact-Rich Manipulation Tasks with Differentiable Simulation

arXiv.org Artificial Intelligence

When humans perform contact-rich manipulation tasks, customized tools are often necessary to simplify the task. For instance, we use various utensils for handling food, such as knives, forks and spoons. Similarly, robots may benefit from specialized tools that enable them to more easily complete a variety of tasks. We present an end-to-end framework to automatically learn tool morphology for contact-rich manipulation tasks by leveraging differentiable physics simulators. Previous work relied on manually constructed priors requiring detailed specification of a 3D object model, grasp pose and task description to facilitate the search or optimization process. Our approach only requires defining the objective with respect to task performance and enables learning a robust morphology through randomizing variations of the task. We make this optimization tractable by casting it as a continual learning problem. We demonstrate the effectiveness of our method for designing new tools in several scenarios, such as winding ropes, flipping a box and pushing peas onto a scoop in simulation. Additionally, experiments with real robots show that the tool shapes discovered by our method help them succeed in these scenarios.


Rethinking Optimization with Differentiable Simulation from a Global Perspective

arXiv.org Machine Learning

Differentiable simulation is a promising toolkit for fast gradient-based policy optimization and system identification. However, existing approaches to differentiable simulation have largely tackled scenarios where obtaining smooth gradients has been relatively easy, such as systems with mostly smooth dynamics. In this work, we study the challenges that differentiable simulation presents when it is not feasible to expect that a single descent reaches a global optimum, which is often a problem in contact-rich scenarios. We analyze the optimization landscapes of diverse scenarios that contain both rigid bodies and deformable objects. In dynamic environments with highly deformable objects and fluids, differentiable simulators produce rugged landscapes with nonetheless useful gradients in some parts of the space. We propose a method that combines Bayesian optimization with semi-local 'leaps' to obtain a global search method that can use gradients effectively, while also maintaining robust performance in regions with noisy gradients. We show that our approach outperforms several gradient-based and gradient-free baselines on an extensive set of experiments in simulation, and also validate the method using experiments with a real robot and deformables. Videos and supplementary materials are available at https://tinyurl.com/globdiff


Analytic Manifold Learning: Unifying and Evaluating Representations for Continuous Control

arXiv.org Machine Learning

We address the problem of learning reusable state representations from streaming high-dimensional observations. This is important for areas like Reinforcement Learning (RL), which yields non-stationary data distributions during training. We make two key contributions. First, we propose an evaluation suite that measures alignment between latent and true low-dimensional states. We benchmark several widely used unsupervised learning approaches. This uncovers the strengths and limitations of existing approaches that impose additional constraints/objectives on the latent space. Our second contribution is a unifying mathematical formulation for learning latent relations. We learn analytic relations on source domains, then use these relations to help structure the latent space when learning on target domains. This formulation enables a more general, flexible and principled way of shaping the latent space. It formalizes the notion of learning independent relations, without imposing restrictive simplifying assumptions or requiring domain-specific information. We present mathematical properties, concrete algorithms for implementation and experimental validation of successful learning and transfer of latent relations.