Variational Gaussian-process factor analysis for modeling spatio-temporal data
Luttinen, Jaakko, Ilin, Alexander
–Neural Information Processing Systems
We present a probabilistic factor analysis model which can be used for studying spatiotemporal datasets. The spatial and temporal structure is modeled by using Gaussian process priors both for the loading matrix and the factors. The posterior distributions are approximated using the variational Bayesian framework. High computational cost of Gaussian process modeling is reduced by using sparse approximations. Themodel is used to compute the reconstructions of the global sea surface temperatures from a historical dataset. The results suggest that the proposed model can outperform the state-of-the-art reconstruction systems.
Neural Information Processing Systems
Dec-31-2009
- Country:
- Europe > Finland (0.14)
- North America > United States (0.14)
- Genre:
- Research Report (0.34)
- Technology: