Variance-Reduced Stochastic Gradient Descent on Streaming Data
Jothimurugesan, Ellango, Tahmasbi, Ashraf, Gibbons, Phillip, Tirthapura, Srikanta
–Neural Information Processing Systems
We present an algorithm STRSAGA for efficiently maintaining a machine learning model over data points that arrive over time, quickly updating the model as new training data is observed. We present a competitive analysis comparing the sub-optimality of the model maintained by STRSAGA with that of an offline algorithm that is given the entire data beforehand, and analyze the risk-competitiveness of STRSAGA under different arrival patterns. Our theoretical and experimental results show that the risk of STRSAGA is comparable to that of offline algorithms on a variety of input arrival patterns, and its experimental performance is significantly better than prior algorithms suited for streaming data, such as SGD and SSVRG.
Neural Information Processing Systems
Dec-31-2018
- Country:
- North America
- Canada (0.14)
- United States (0.14)
- North America
- Genre:
- Research Report > New Finding (1.00)
- Technology: