Goto

Collaborating Authors

 Tirthapura, Srikanta


Variance-Reduced Stochastic Gradient Descent on Streaming Data

Neural Information Processing Systems

We present an algorithm STRSAGA for efficiently maintaining a machine learning model over data points that arrive over time, quickly updating the model as new training data is observed. We present a competitive analysis comparing the sub-optimality of the model maintained by STRSAGA with that of an offline algorithm that is given the entire data beforehand, and analyze the risk-competitiveness of STRSAGA under different arrival patterns. Our theoretical and experimental results show that the risk of STRSAGA is comparable to that of offline algorithms on a variety of input arrival patterns, and its experimental performance is significantly better than prior algorithms suited for streaming data, such as SGD and SSVRG.


Variance-Reduced Stochastic Gradient Descent on Streaming Data

Neural Information Processing Systems

We present an algorithm STRSAGA for efficiently maintaining a machine learning model over data points that arrive over time, quickly updating the model as new training data is observed. We present a competitive analysis comparing the sub-optimality of the model maintained by STRSAGA with that of an offline algorithm that is given the entire data beforehand, and analyze the risk-competitiveness of STRSAGA under different arrival patterns. Our theoretical and experimental results show that the risk of STRSAGA is comparable to that of offline algorithms on a variety of input arrival patterns, and its experimental performance is significantly better than prior algorithms suited for streaming data, such as SGD and SSVRG.


Learning Graphical Models from a Distributed Stream

arXiv.org Machine Learning

A current challenge for data management systems is to support the construction and maintenance of machine learning models over data that is large, multi-dimensional, and evolving. While systems that could support these tasks are emerging, the need to scale to distributed, streaming data requires new models and algorithms. In this setting, as well as computational scalability and model accuracy, we also need to minimize the amount of communication between distributed processors, which is the chief component of latency. We study Bayesian networks, the workhorse of graphical models, and present a communication-efficient method for continuously learning and maintaining a Bayesian network model over data that is arriving as a distributed stream partitioned across multiple processors. We show a strategy for maintaining model parameters that leads to an exponential reduction in communication when compared with baseline approaches to maintain the exact MLE (maximum likelihood estimation). Meanwhile, our strategy provides similar prediction errors for the target distribution and for classification tasks.