Orientation, Scale, and Discontinuity as Emergent Properties of Illusory Contour Shape
Thornber, Karvel K., Williams, Lance R.
–Neural Information Processing Systems
A recent neural model of illusory contour formation is based on a distribution of natural shapes traced by particles moving with constant speed in directions given by Brownian motions. The input to that model consists of pairs of position and direction constraints and the output consists of the distribution of contours joining all such pairs. In general, these contours will not be closed and their distribution will not be scale-invariant. In this paper, we show how to compute a scale-invariant distribution of closed contours given position constraints alone and use this result to explain a well known illusory contour effect. 1 INTRODUCTION It has been proposed by Mumford[3] that the distribution of illusory contour shapes can be modeled by particles travelling with constant speed in directions given by Brownian motions. More recently, Williams and Jacobs[7, 8] introduced the notion of a stochastic completion field, the distribution of particle trajectories joining pairs of position and direction constraints, and showed how it could be computed in a local parallel network.
Neural Information Processing Systems
Dec-31-1999