Goto

Collaborating Authors

 Norway


PersonalSum: A User-Subjective Guided Personalized Summarization Dataset for Large Language Models

Neural Information Processing Systems

With the rapid advancement of Natural Language Processing in recent years, numerous studies have shown that generic summaries generated by Large Language Models (LLMs) can sometimes surpass those annotated by experts, such as journalists, according to human evaluations. However, there is limited research on whether these generic summaries meet the individual needs of ordinary people. The biggest obstacle is the lack of human-annotated datasets from the general public. Existing work on personalized summarization often relies on pseudo datasets created from generic summarization datasets or controllable tasks that focus on specific named entities or other aspects, such as the length and specificity of generated summaries, collected from hypothetical tasks without the annotators' initiative. To bridge this gap, we propose a high-quality, personalized, manually annotated abstractive summarization dataset called PersonalSum. This dataset is the first to investigate whether the focus of public readers differs from the generic summaries generated by LLMs. It includes user profiles, personalized summaries accompanied by source sentences from given articles, and machine-generated generic summaries along with their sources. We investigate several personal signals -- entities/topics, plot, and structure of articles--that may affect the generation of personalized summaries using LLMs in a few-shot in-context learning scenario. Our preliminary results and analysis indicate that entities/topics are merely one of the key factors that impact the diverse preferences of users, and personalized summarization remains a significant challenge for existing LLMs.


OSLO: One-Shot Label-Only Membership Inference Attacks

Neural Information Processing Systems

We introduce One-Shot Label-Only (OSLO) membership inference attacks (MIAs), which accurately infer a given sample's membership in a target model's training set with high precision using just a single query, where the target model only returns the predicted hard label. This is in contrast to state-of-the-art label-only attacks which require 6000 queries, yet get attack precisions lower than OSLO's.



A generative model of the hippocampal formation trained with theta driven local learning rules Tom M George

Neural Information Processing Systems

Advances in generative models have recently revolutionised machine learning. Meanwhile, in neuroscience, generative models have long been thought fundamental to animal intelligence. Understanding the biological mechanisms that support these processes promises to shed light on the relationship between biological and artificial intelligence. In animals, the hippocampal formation is thought to learn and use a generative model to support its role in spatial and non-spatial memory. Here we introduce a biologically plausible model of the hippocampal formation tantamount to a Helmholtz machine that we apply to a temporal stream of inputs. A novel component of our model is that fast theta-band oscillations (5-10 Hz) gate the direction of information flow throughout the network, training it akin to a high-frequency wake-sleep algorithm. Our model accurately infers the latent state of high-dimensional sensory environments and generates realistic sensory predictions. Furthermore, it can learn to path integrate by developing a ring attractor connectivity structure matching previous theoretical proposals and flexibly transfer this structure between environments.


Analytic solution and stationary phase approximation for the Bayesian lasso and elastic net

Neural Information Processing Systems

The lasso and elastic net linear regression models impose a double-exponential prior distribution on the model parameters to achieve regression shrinkage and variable selection, allowing the inference of robust models from large data sets. However, there has been limited success in deriving estimates for the full posterior distribution of regression coefficients in these models, due to a need to evaluate analytically intractable partition function integrals. Here, the Fourier transform is used to express these integrals as complex-valued oscillatory integrals over "regression frequencies". This results in an analytic expansion and stationary phase approximation for the partition functions of the Bayesian lasso and elastic net, where the non-differentiability of the double-exponential prior has so far eluded such an approach. Use of this approximation leads to highly accurate numerical estimates for the expectation values and marginal posterior distributions of the regression coefficients, and allows for Bayesian inference of much higher dimensional models than previously possible.


A Additional information for Anchor Data Augmentation

Neural Information Processing Systems

A.1 Derivation of ADA for nonlinear data In the following, we provide the more detailed derivation to Equation (10), which motivates the usage of the scaled transformation we use in ADA to obtain ( X We use the same notation that was introduced in Section 3. As discussed in Section 3, we can write แปธ A.2 Additional information on hyperparameters of ADA In this section, we illustrate in a simple 1D example (i.e. Additionally, we show in Appendix B.4 how ADA performance on real-world data is impacted by changes in the hyperparameter values. Instead of limiting the regularization to a fixed pair of (,A) that performs well on a previously known set of interventions, we propose to optimize the loss simultaneously over a set of 2 [0, 1) and different anchor matrices. To reduce the anchor regression's regularization effect, we propose using a combination of the following methods to exploit the data invariances and avoid conservative predictions. Anchor Matrices and Locality: Anchor variable A is assumed to be the exogenous variable that generates heterogeneity in the target and has an approximately linear relation with (X, y) (see AR loss in Equation 3).




An Investigation into the Causal Mechanism of Political Opinion Dynamics: A Model of Hierarchical Coarse-Graining with Community-Bounded Social Influence

arXiv.org Artificial Intelligence

The increasing polarization in democratic societies is an emergent outcome of political opinion dynamics. Yet, the fundamental mechanisms behind the formation of political opinions, from individual beliefs to collective consensus, remain unknown. Understanding that a causal mechanism must account for both bottom-up and top-down influences, we conceptualize political opinion dynamics as hierarchical coarse-graining, where microscale opinions integrate into a macro-scale state variable. Using the CODA (Continuous Opinions Discrete Actions) model, we simulate Bayesian opinion updating, social identity-based information integration, and migration between social identity groups to represent higher-level connectivity. This results in coarse-graining across micro, meso, and macro levels. Our findings show that higher-level connectivity shapes information integration, yielding three regimes: independent (disconnected, local convergence), parallel (fast, global convergence), and iterative (slow, stepwise convergence). In the iterative regime, low connectivity fosters transient diversity, indicating an informed consensus. In all regimes, time-scale separation leads to downward causation, where agents converge on the aggregate majority choice, driving consensus. Critically, any degree of coherent higher-level information integration can overcome misalignment via global downward causation. The results highlight how emergent properties of the causal mechanism, such as downward causation, are essential for consensus and may inform more precise investigations into polarized political discourse.


PUZZLES: A Benchmark for Neural Algorithmic Reasoning

Neural Information Processing Systems

Algorithmic reasoning is a fundamental cognitive ability that plays a pivotal role in problem-solving and decision-making processes. Reinforcement Learning (RL) has demonstrated remarkable proficiency in tasks such as motor control, handling perceptual input, and managing stochastic environments. These advancements have been enabled in part by the availability of benchmarks. In this work we introduce PUZZLES, a benchmark based on Simon Tatham's Portable Puzzle Collection, aimed at fostering progress in algorithmic and logical reasoning in RL. PUZZLES contains 40 diverse logic puzzles of adjustable sizes and varying levels of complexity; many puzzles also feature a diverse set of additional configuration parameters.