A Solution for Missing Data in Recurrent Neural Networks with an Application to Blood Glucose Prediction

Tresp, Volker, Briegel, Thomas

Neural Information Processing Systems 

Volker Tresp and Thomas Briegel * Siemens AG Corporate Technology Otto-Hahn-Ring 6 81730 Miinchen, Germany Abstract We consider neural network models for stochastic nonlinear dynamical systems where measurements of the variable of interest are only available atirregular intervals i.e. most realizations are missing. Difficulties arise since the solutions for prediction and maximum likelihood learning withmissing data lead to complex integrals, which even for simple cases cannot be solved analytically. In this paper we propose a specific combinationof a nonlinear recurrent neural predictive model and a linear error model which leads to tractable prediction and maximum likelihood adaptation rules. In particular, the recurrent neural network can be trained using the real-time recurrent learning rule and the linear error model can be trained by an EM adaptation rule, implemented using forward-backwardKalman filter equations. The model is applied to predict the glucose/insulin metabolism of a diabetic patient where blood glucose measurements are only available a few times a day at irregular intervals.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found