Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter
Russell, Stuart (University of California, Berkeley) | Dietterich, Tom (Oregon State University) | Horvitz, Eric (Microsoft) | Selman, Bart (Cornell University) | Rossi, Francesca (University of Padova) | Hassabis, Demis (DeepMind) | Legg, Shane (DeepMind) | Suleyman, Mustafa (DeepMind) | George, Dileep (Vicarious) | Phoenix, Scott (Vicarious)
The adoption of probabilistic and decision-theoretic representations and statistical learning methods has led to a large degree of integration and cross-fertilization among AI, machine learning, statistics, control theory, neuroscience, and other fields. The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit of AI. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do. In summary, we believe that research on how to make AI systems robust and beneficial is both important and timely, and that there are concrete research directions that can be pursued today.
Dec-31-2015
- Technology: