A New Model of Spatial Representation in Multimodal Brain Areas
Denève, Sophie, Duhamel, Jean-René, Pouget, Alexandre
–Neural Information Processing Systems
Most models of spatial representations in the cortex assume cells with limited receptive fields that are defined in a particular egocentric frame of reference. However, cells outside of primary sensory cortex are either gain modulated by postural input or partially shifting. We show that solving classical spatial tasks, like sensory prediction, multi-sensory integration, sensory-motor transformation and motor control requires more complicated intermediate representations that are not invariant in one frame of reference. We present an iterative basis function map that performs these spatial tasks optimally with gain modulated and partially shifting units, and tests it against neurophysiological and neuropsychological data. In order to perform an action directed toward an object, it is necessary to have a representation of its spatial location.
Neural Information Processing Systems
Dec-31-2001