Pouget, Alexandre
Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution
Zador, Anthony, Escola, Sean, Richards, Blake, Ölveczky, Bence, Bengio, Yoshua, Boahen, Kwabena, Botvinick, Matthew, Chklovskii, Dmitri, Churchland, Anne, Clopath, Claudia, DiCarlo, James, Ganguli, Surya, Hawkins, Jeff, Koerding, Konrad, Koulakov, Alexei, LeCun, Yann, Lillicrap, Timothy, Marblestone, Adam, Olshausen, Bruno, Pouget, Alexandre, Savin, Cristina, Sejnowski, Terrence, Simoncelli, Eero, Solla, Sara, Sussillo, David, Tolias, Andreas S., Tsao, Doris
This implies that the bulk of the work in developing general AI can be achieved by building systems that match the perceptual and motor abilities of animals and that the subsequent step to human-level intelligence would be considerably smaller. This is good news because progress on the first goal can rely on the favored subjects of neuroscience research - rats, mice, and non-human primates - for which extensive and rapidly expanding behavioral and neural datasets can guide the way. Thus, we believe that the NeuroAI path will lead to necessary advances if we figure out the core capabilities that all animals possess in embodied sensorimotor interaction with the world. NeuroAI Grand Challenge: The Embodied Turing Test In 1950, Alan Turing proposed the "imitation game" as a test of a machine's ability to exhibit intelligent behavior indistinguishable from that of a human
Optimal decision-making with time-varying evidence reliability
Drugowitsch, Jan, Moreno-Bote, Ruben, Pouget, Alexandre
Previous theoretical and experimental work on optimal decision-making was restricted to the artificial setting of a reliability of the momentary sensory evidence that remained constant within single trials. The work presented here describes the computation and characterization of optimal decision-making in the more realistic case of an evidence reliability that varies across time even within a trial. It shows that, in this case, the optimal behavior is determined by a bound in the decision maker's belief that depends only on the current, but not the past, reliability. We furthermore demonstrate that simpler heuristics fail to match the optimal performance for certain characteristics of the process that determines the time-course of this reliability, causing a drop in reward rate by more than 50%.
Demixing odors - fast inference in olfaction
Grabska-Barwinska, Agnieszka, Beck, Jeff, Pouget, Alexandre, Latham, Peter
The olfactory system faces a difficult inference problem: it has to determine what odors are present based on the distributed activation of its receptor neurons. Here we derive neural implementations of two approximate inference algorithms that could be used by the brain. One is a variational algorithm (which builds on the work of Beck. et al., 2012), the other is based on sampling. Importantly, we use a more realistic prior distribution over odors than has been used in the past: we use a spike and slab'' prior, for which most odors have zero concentration. After mapping the two algorithms onto neural dynamics, we find that both can infer correct odors in less than 100 ms, although it takes ~500 ms to eliminate false positives. Thus, at the behavioral level, the two algorithms make very similar predictions. However, they make different assumptions about connectivity and neural computations, and make different predictions about neural activity. Thus, they should be distinguishable experimentally. If so, that would provide insight into the mechanisms employed by the olfactory system, and, because the two algorithms use very different coding strategies, that would also provide insight into how networks represent probabilities."
Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models
Beck, Jeff, Pouget, Alexandre, Heller, Katherine A.
Recent experiments have demonstrated that humans and animals typically reason probabilistically about their environment. This ability requires a neural code that represents probability distributions and neural circuits that are capable of implementing the operations of probabilistic inference. The proposed probabilistic population coding (PPC) framework provides a statistically efficient neural representation of probability distributions that is both broadly consistent with physiological measurements and capable of implementing some of the basic operations of probabilistic inference in a biologically plausible way. However, these experiments and the corresponding neural models have largely focused on simple (tractable) probabilistic computations such as cue combination, coordinate transformations, and decision making. As a result it remains unclear how to generalize this framework to more complex probabilistic computations. Here we address this short coming by showing that a very general approximate inference algorithm known as Variational Bayesian Expectation Maximization can be implemented within the linear PPC framework. We apply this approach to a generic problem faced by any given layer of cortex, namely the identification of latent causes of complex mixtures of spikes. We identify a formal equivalent between this spike pattern demixing problem and topic models used for document classification, in particular Latent Dirichlet Allocation (LDA). We then construct a neural network implementation of variational inference and learning for LDA that utilizes a linear PPC. This network relies critically on two non-linear operations: divisive normalization and super-linear facilitation, both of which are ubiquitously observed in neural circuits. We also demonstrate how online learning can be achieved using a variation of Hebb’s rule and describe an extesion of this work which allows us to deal with time varying and correlated latent causes.
Dynamical Constraints on Computing with Spike Timing in the Cortex
Banerjee, Arunava, Pouget, Alexandre
If the cortex uses spike timing to compute, the timing of the spikes must be robust to perturbations. Based on a recent framework that provides a simple criterion to determine whether a spike sequence produced by a generic network is sensitive to initial conditions, and numerical simulations of a variety of network architectures, we argue within the limits set by our model of the neuron, that it is unlikely that precise sequences of spike timings are used for computation under conditions typically found in the cortex. 1 Introduction
Dynamical Constraints on Computing with Spike Timing in the Cortex
Banerjee, Arunava, Pouget, Alexandre
If the cortex uses spike timing to compute, the timing of the spikes must be robust to perturbations. Based on a recent framework that provides a simple criterion to determine whether a spike sequence produced by a generic network is sensitive to initial conditions, and numerical simulations of a variety of network architectures, we argue within the limits set by our model of the neuron, that it is unlikely that precise sequences of spike timings are used for computation under conditions typically found in the cortex. 1 Introduction
A New Model of Spatial Representation in Multimodal Brain Areas
Denève, Sophie, Duhamel, Jean-René, Pouget, Alexandre
Most models of spatial representations in the cortex assume cells with limited receptive fields that are defined in a particular egocentric frameof reference. However, cells outside of primary sensory cortex are either gain modulated by postural input or partially shifting. We show that solving classical spatial tasks, like sensory prediction,multi-sensory integration, sensory-motor transformation andmotor control requires more complicated intermediate representations that are not invariant in one frame of reference. We present an iterative basis function map that performs these spatial tasks optimally with gain modulated and partially shifting units, and tests it against neurophysiological and neuropsychological data. In order to perform an action directed toward an object, it is necessary to have a representation of its spatial location.
A New Model of Spatial Representation in Multimodal Brain Areas
Denève, Sophie, Duhamel, Jean-René, Pouget, Alexandre
Most models of spatial representations in the cortex assume cells with limited receptive fields that are defined in a particular egocentric frame of reference. However, cells outside of primary sensory cortex are either gain modulated by postural input or partially shifting. We show that solving classical spatial tasks, like sensory prediction, multi-sensory integration, sensory-motor transformation and motor control requires more complicated intermediate representations that are not invariant in one frame of reference. We present an iterative basis function map that performs these spatial tasks optimally with gain modulated and partially shifting units, and tests it against neurophysiological and neuropsychological data. In order to perform an action directed toward an object, it is necessary to have a representation of its spatial location.
Divisive Normalization, Line Attractor Networks and Ideal Observers
Denève, Sophie, Pouget, Alexandre, Latham, Peter E.
Using simulations, we show that divisive normalization is a close approximation to a maximum likelihood estimator, which, in the context of population coding, is the same as an ideal observer. We also demonstrate analytically thatthis is a general property of a large class of nonlinear recurrent networks with line attractors. Our work suggests that divisive normalization plays a critical role in noise filtering, and that every cortical layer may be an ideal observer of the activity in the preceding layer. Information processing in the cortex is often formalized as a sequence of a linear stages followed by a nonlinearity. In the visual cortex, the nonlinearity is best described bysquaring combined with a divisive pooling of local activities.
Divisive Normalization, Line Attractor Networks and Ideal Observers
Denève, Sophie, Pouget, Alexandre, Latham, Peter E.
We explore in this study the statistical properties of this normalization in the presence of noise. Using simulations, we show that divisive normalization is a close approximation to a maximum likelihood estimator, which, in the context of population coding, is the same as an ideal observer. We also demonstrate analytically that this is a general property of a large class of nonlinear recurrent networks with line attractors. Our work suggests that divisive normalization plays a critical role in noise filtering, and that every cortical layer may be an ideal observer of the activity in the preceding layer. Information processing in the cortex is often formalized as a sequence of a linear stages followed by a nonlinearity.