Language Model as Visual Explainer

Neural Information Processing Systems 

Central to our strategy is the collaboration between vision models and LLM to craft explanations. On one hand, the LLM is harnessed to delineate hierarchical visual attributes, while concurrently, a text-to-image API retrieves images that are most aligned with these textual concepts. By mapping the collected texts and images to the vision model's embedding space, we construct a hierarchy-structured visual embedding tree. This tree is dynamically pruned and grown by querying the LLM using language templates, tailoring the explanation to the model. Such a scheme allows us to seamlessly incorporate new attributes while eliminating undesired concepts based on the model's representations. When applied to testing samples, our method provides human-understandable explanations in the form of attributeladen trees. Beyond explanation, we retrained the vision model by calibrating it on the generated concept hierarchy, allowing the model to incorporate the refined knowledge of visual attributes. To access the effectiveness of our approach, we introduce new benchmarks and conduct rigorous evaluations, demonstrating its plausibility, faithfulness, and stability.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found