Generalized Label Reduction for Merge-and-Shrink Heuristics

Sievers, Silvan (University of Basel, Switzerland) | Wehrle, Martin (University of Basel, Switzerland) | Helmert, Malte (University of Basel)

AAAI Conferences 

Label reduction is a technique for simplifying families of labeled transition systems by dropping distinctions between certain transition labels. While label reduction is critical to the efficient computation of merge-and-shrink heuristics, current theory only permits reducing labels in a limited number of cases. We generalize this theory so that labels can be reduced in every intermediate abstraction of a merge-and-shrink tree. This is particularly important for efficiently computing merge-and-shrink abstractions based on non-linear merge strategies. As a case study, we implement a non-linear merge strategy based on the original work on merge-and-shrink heuristics in model checking by Dräger et al.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found