Probabilistic Planning for Decentralized Multi-Robot Systems

Amato, Christopher (University of New Hampshire) | Konidaris, George (Duke University) | Omidshafiei, Shayegan (Massachusetts Institute of Technology) | Agha-mohammadi, Ali-akbar (Qualcomm Research) | How, Jonathan P. (Massachusetts Institute of Technology) | Kaelbling, Leslie P. (Massachusetts Institute of Technology)

AAAI Conferences 

Multi-robot systems are an exciting application domain for AI research and Dec-POMDPs, specifically. MacDec-POMDP methods can produce high-quality general solutions for realistic heterogeneous multi-robot coordination problems by automatically generating control and communication policies, given a model. In contrast to most existing multi-robot methods that are specialized to a particular problem class, our approach can synthesize policies that exploit any opportunities for coordination that are present in the problem, while balancing uncertainty, sensor information, and information about other agents.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found