Massachusetts Institute of Technology
Chance-constrained Static Schedules for Temporally Probabilistic Plans
Fang, Cheng (Massachusetts Institute of Technology) | Wang, Andrew J. (MIT) | Williams, Brian C. (CSAIL, MIT)
Time management under uncertainty is essential to large scale projects. From space exploration to industrial production, there is a need to schedule and perform activities. given complex specifications on timing. In order to generate schedules that are robust to uncertainty in the duration of activities, prior work has focused on a problem framing that uses an interval-bounded uncertainty representation. However, such approaches are unable to take advantage of known probability distributions over duration. In this paper we concentrate on a probabilistic formulation of temporal problems with uncertain duration, called the probabilistic simple temporal problem. As distributions often have an unbounded range of outcomes, we consider chance-constrained solutions, with guarantees on the probability of meeting temporal constraints. By considering distributions over uncertain duration, we are able to use risk as a resource, reason over the relative likelihood of outcomes, and derive higher utility solutions. We first demonstrate our approach by encoding the problem as a convex program. We then develop a more efficient hybrid algorithm whose parent solver generates risk allocations and whose child solver generates schedules for a particular risk allocation. The child is made efficient by leveraging existing interval-bounded scheduling algorithms, while the parent is made efficient by extracting conflicts over risk allocations. We perform numerical experiments to show the advantages of reasoning over probabilistic uncertainty, by comparing the utility of schedules generated with risk allocation against those generated from reasoning over bounded uncertainty. We also empirically show that solution time is greatly reduced by incorporating conflict-directed risk allocation.
Reports of the Workshops of the 32nd AAAI Conference on Artificial Intelligence
Bouchard, Bruno (Universitรฉ du Quรฉbec ร Chicoutimi) | Bouchard, Kevin (Universitรฉ du Quรฉbec ร Chicoutimi) | Brown, Noam (Carnegie Mellon University) | Chhaya, Niyati (Adobe Research, Bangalore) | Farchi, Eitan (IBM Research, Haifa) | Gaboury, Sebastien (Universitรฉ du Quรฉbec ร Chicoutimi) | Geib, Christopher (Smart Information Flow Technologies) | Gyrard, Amelie (Wright State University) | Jaidka, Kokil (University of Pennsylvania) | Keren, Sarah (Technion โ Israel Institute of Technology) | Khardon, Roni (Tufts University) | Kordjamshidi, Parisa (Tulane University) | Martinez, David (MIT Lincoln Laboratory) | Mattei, Nicholas (IBM Research, TJ Watson) | Michalowski, Martin (University of Minnesota School of Nursing) | Mirsky, Reuth (Ben Gurion University) | Osborn, Joseph (Pomona College) | Sahin, Cem (MIT Lincoln Laboratory) | Shehory, Onn (Bar Ilan University) | Shaban-Nejad, Arash (University of Tennessee Health Science Center) | Sheth, Amit (Wright State University) | Shimshoni, Ilan (University of Haifa) | Shrobe, Howie (Massachusetts Institute of Technology) | Sinha, Arunesh (University of Southern California.) | Sinha, Atanu R. (Adobe Research, Bangalore) | Srivastava, Biplav (IBM Research, Yorktown Height) | Streilein, William (MIT Lincoln Laboratory) | Theocharous, Georgios (Adobe Research, San Jose) | Venable, K. Brent (Tulane University and IHMC) | Wagner, Neal (MIT Lincoln Laboratory) | Zamansky, Anna (University of Haifa)
The AAAI-18 workshop program included 15 workshops covering a wide range of topics in AI. Workshops were held Sunday and Monday, February 2โ7, 2018, at the Hilton New Orleans Riverside in New Orleans, Louisiana, USA. This report contains summaries of the Affective Content Analysis workshop; the Artificial Intelligence Applied to Assistive Technologies and Smart Environments; the AI and Marketing Science workshop; the Artificial Intelligence for Cyber Security workshop; the AI for Imperfect-Information Games; the Declarative Learning Based Programming workshop; the Engineering Dependable and Secure Machine Learning Systems workshop; the Health Intelligence workshop; the Knowledge Extraction from Games workshop; the Plan, Activity, and Intent Recognition workshop; the Planning and Inference workshop; the Preference Handling workshop; the Reasoning and Learning for Human-Machine Dialogues workshop; and the the AI Enhanced Internet of Things Data Processing for Intelligent Applications workshop.
Reports of the AAAI 2017 Fall Symposium Series
Flenner, Arjuna (NAVAIR China Lake) | Fraune, Marlena R. (Indiana University) | Hiatt, Laura M. (Naval Research Laboratory (NRL)) | Kendall, Tony (Naval Postgraduate School) | Laird, John E. (University of Michigan) | Lebiere, Christian (Carnegie Mellon University) | Rosenbloom, Paul S. (Institute for Creative Technologies, University of Southern California) | Stein, Frank (IBM) | Topp, Elin A. (Lund University) | Unhelkar, Vaibhav V. (Massachusetts Institute of Technology) | Zhao, Ying (Naval Postgraduate School)
The AAAI 2017 Fall Symposium Series was held Thursday through Saturday, November 9โ11, at the Westin Arlington Gateway in Arlington, Virginia, adjacent to Washington, DC. The titles of the six symposia were Artificial Intelligence for Human-Robot Interaction; Cognitive Assistance in Government and Public Sector Applications; Deep Models and Artificial Intelligence for Military Applications: Potentials, Theories, Practices, Tools and Risks; Human-Agent Groups: Studies, Algorithms and Challenges; Natural Communication for Human-Robot Collaboration; and A Standard Model of the Mind. The highlights of each symposium (except the Natural Communication for Human-Robot Collaboration symposium, whose organizers did not submit a report) are presented in this report.
Gated Orthogonal Recurrent Units: On Learning to Forget
Jing, Li (Massachusetts Institute of Technology) | Gulcehre, Caglar (MILA - Universite de Montreal) | Peurifoy, John (Massachusetts Institute of Technology) | Shen, Yichen (Massachusetts Institute of Technology) | Tegmark, Max (Massachusetts Institute of Technology) | Soljacic, Marin (Massachusetts Institute of Technology) | Bengio, Yoshua (MILA - Universite de Montreal)
We present a novel recurrent neural network (RNN) based model that combines the remembering ability of unitary RNNs with the ability of gated RNNs to effectively forget redundant/irrelevant information in its memory. We achieve this by extending unitary RNNs with a gating mechanism. Our model is able to outperform LSTMs, GRUs and Unitary RNNs on several long-term dependency benchmark tasks. We empirically both show the orthogonal/unitary RNNs lack the ability to forget and also the ability of GORU to simultaneously remember long term dependencies while forgetting irrelevant information. This plays an important role in recurrent neural networks. We provide competitive results along with an analysis of our model on many natural sequential tasks including the bAbI Question Answering, TIMIT speech spectrum prediction, Penn TreeBank, and synthetic tasks that involve long-term dependencies such as algorithmic, parenthesis, denoising and copying tasks.
Fact Checking in Community Forums
Mihaylova, Tsvetomila (Sofia University "St. Kliment Ohridski") | Nakov, Preslav ( Qatar Computing Research Institute, HBKU ) | Mร rquez, Lluรญs (Qatar Computing Research Institute, HBKU) | Barrรณn-Cedeรฑo, Alberto (Qatar Computing Research Institute, HBKU) | Mohtarami, Mitra (Massachusetts Institute of Technology) | Karadzhov, Georgi (Sofia University "St. Kliment Ohridski") | Glass, James (Massachusetts Institute of Technology)
Community Question Answering (cQA) forums are very popular nowadays, as they represent effective means for communities around particular topics to share information. Unfortunately, this information is not always factual. Thus, here we explore a new dimension in the context of cQA, which has been ignored so far: checking the veracity of answers to particular questions in cQA forums. As this is a new problem, we create a specialized dataset for it. We further propose a novel multi-faceted model, which captures information from the answer content (what is said and how), from the author profile (who says it), from the rest of the community forum (where it is said), and from external authoritative sources of information (external support). Evaluation results show a MAP value of 86.54, which is 21 points absolute above the baseline.
Guiding Search in Continuous State-Action Spaces by Learning an Action Sampler From Off-Target Search Experience
Kim, Beomjoon (Massachusetts Institute of Technology) | Kaelbling, Leslie Pack (Massachusetts Institute of Technology) | Lozano-Pรฉrez, Tomรกs (Massachusetts Institute of Technology)
In robotics, it is essential to be able to plan efficiently in high-dimensional continuous state-action spaces for long horizons. For such complex planning problems, unguided uniform sampling of actions until a path to a goal is found is hopelessly inefficient, and gradient-based approaches often fall short when the optimization manifold of a given problem is not smooth. In this paper, we present an approach that guides search in continuous spaces for generic planners by learning an action sampler from past search experience. We use a Generative Adversarial Network (GAN) to represent an action sampler, and address an important issue: search experience consists of a relatively large number of actions that are not on a solution path and a relatively small number of actions that actually are on a solution path. We introduce a new technique, based on an importance-ratio estimation method, for using samples from a non-target distribution to make GAN learning more data-efficient. We provide theoretical guarantees and empirical evaluation in three challenging continuous robot planning problems to illustrate the effectiveness of our algorithm.
Decentralized High-Dimensional Bayesian Optimization With Factor Graphs
Hoang, Trong Nghia (Massachusetts Institute of Technology) | Hoang, Quang Minh (National University of Singapore) | Ouyang, Ruofei (National University of Singapore) | Low, Kian Hsiang (National University of Singapore)
This paper presents a novel decentralized high-dimensional Bayesian optimization (DEC-HBO) algorithm that, in contrast to existing HBO algorithms, can exploit the interdependent effects of various input components on the output of the unknown objective function f for boosting the BO performance and still preserve scalability in the number of input dimensions without requiring prior knowledge or the existence of a low (effective) dimension of the input space. To realize this, we propose a sparse yet rich factor graph representation of f to be exploited for designing an acquisition function that can be similarly represented by a sparse factor graph and hence be efficiently optimized in a decentralized manner using distributed message passing. Despite richly characterizing the interdependent effects of the input components on the output of f with a factor graph, DEC-HBO can still guarantee no-regret performance asymptotically. Empirical evaluation on synthetic and real-world experiments (e.g., sparse Gaussian process model with 1811 hyperparameters) shows that DEC-HBO outperforms the state-of-the-art HBO algorithms.
Deep Semi-Random Features for Nonlinear Function Approximation
Kawaguchi, Kenji (Massachusetts Institute of Technology) | Xie, Bo (Georgia Institute of Technology) | Song, Le (Georgia Institute of Technology)
We propose semi-random features for nonlinear function approximation. The flexibility of semi-random feature lies between the fully adjustable units in deep learning and the random features used in kernel methods. For one hidden layer models with semi-random features, we prove with no unrealistic assumptions that the model classes contain an arbitrarily good function as the width increases (universality), and despite non-convexity, we can find such a good function (optimization theory) that generalizes to unseen new data (generalization bound). For deep models, with no unrealistic assumptions, we prove universal approximation ability, a lower bound on approximation error, a partial optimization guarantee, and a generalization bound. Depending on the problems, the generalization bound of deep semi-random features can be exponentially better than the known bounds of deep ReLU nets; our generalization error bound can be independent of the depth, the number of trainable weights as well as the input dimensionality. In experiments, we show that semi-random features can match the performance of neural networks by using slightly more units, and it outperforms random features by using significantly fewer units. Moreover, we introduce a new implicit ensemble method by using semi-random features.
A Voting-Based System for Ethical Decision Making
Noothigattu, Ritesh (Carnegie Mellon University) | Gaikwad, Snehalkumar S. (Massachusetts Institute of Technology) | Awad, Edmond (Massachusetts Institute of Technology) | Dsouza, Sohan (Massachusetts Institute of Technology) | Rahwan, Iyad (Massachusetts Institute of Technology) | Ravikumar, Pradeep ( Carnegie Mellon University ) | Procaccia, Ariel D. ( Carnegie Mellon University )
We present a general approach to automating ethical decisions, drawing on machine learning and computational social choice. In a nutshell, we propose to learn a model of societal preferences, and, when faced with a specific ethical dilemma at runtime, efficiently aggregate those preferences to identify a desirable choice. We provide a concrete algorithm that instantiates our approach; some of its crucial steps are informed by a new theory of swap-dominance efficient voting rules. Finally, we implement and evaluate a system for ethical decision making in the autonomous vehicle domain, using preference data collected from 1.3 million people through the Moral Machine website.
Model AI Assignments 2018
Neller, Todd W. (Gettysburg College) | Butler, Zack (Rochester Institute of Technology) | Derbinsky, Nate (Northeastern University) | Furey, Heidi (Manhattan College) | Martin, Fred (University of Massachusetts Lowell) | Guerzhoy, Michael (University of Toronto) | Anders, Ariel (Massachusetts Institute of Technology) | Eckroth, Joshua (Stetson University)
The Model AI Assignments session seeks to gather and disseminate the best assignment designs of the Artificial Intelligence (AI) Education community. Recognizing that assignments form the core of student learning ex- perience, we here present abstracts of seven AI assign- ments from the 2018 session that are easily adoptable, playfully engaging, and flexible for a variety of instruc- tor needs.