When Does Bounded-Optimal Metareasoning Favor Few Cognitive Systems?

Milli, Smitha (University of California, Berkeley) | Lieder, Falk (University of California, Berkeley) | Griffiths, Thomas L. (University of California, Berkeley)

AAAI Conferences 

While optimal metareasoning is notoriously intractable, humans are nonetheless able to adaptively allocate their computational resources. A possible approximation that humans may use to do this is to only metareason over a finite set of cognitive systems that perform variable amounts of computation. The highly influential "dual-process" accounts of human cognition, which postulate the coexistence of a slow accurate system with a fast error-prone system, can be seen as a special case of this approximation. This raises two questions: how many cognitive systems should a bounded optimal agent be equipped with and what characteristics should those systems have? We investigate these questions in two settings: a one-shot decision between two alternatives, and planning under uncertainty in a Markov decision process. We find that the optimal number of systems depends on the variability of the environment and the costliness of metareasoning. Consistent with dual-process theories, we also find that when having two systems is optimal, then the first system is fast but error-prone and the second system is slow but accurate.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found