Collaborating Authors

Griffiths, Thomas L.

Can Humans Do Less-Than-One-Shot Learning? Artificial Intelligence

Being able to learn from small amounts of data is a key characteristic of human intelligence, but exactly {\em how} small? In this paper, we introduce a novel experimental paradigm that allows us to examine classification in an extremely data-scarce setting, asking whether humans can learn more categories than they have exemplars (i.e., can humans do "less-than-one shot" learning?). An experiment conducted using this paradigm reveals that people are capable of learning in such settings, and provides several insights into underlying mechanisms. First, people can accurately infer and represent high-dimensional feature spaces from very little data. Second, having inferred the relevant spaces, people use a form of prototype-based categorization (as opposed to exemplar-based) to make categorical inferences. Finally, systematic, machine-learnable patterns in responses indicate that people may have efficient inductive biases for dealing with this class of data-scarce problems.

Cognitive science as a source of forward and inverse models of human decisions for robotics and control Artificial Intelligence

Those designing autonomous systems that interact with humans will invariably face questions about how humans think and make decisions. Fortunately, computational cognitive science offers insight into human decision-making using tools that will be familiar to those with backgrounds in optimization and control (e.g., probability theory, statistical machine learning, and reinforcement learning). Here, we review some of this work, focusing on how cognitive science can provide forward models of human decision-making and inverse models of how humans think about others' decision-making. We highlight relevant recent developments, including approaches that synthesize blackbox and theory-driven modeling, accounts that recast heuristics and biases as forms of bounded optimality, and models that characterize human theory of mind and communication in decision-theoretic terms. In doing so, we aim to provide readers with a glimpse of the range of frameworks, methodologies, and actionable insights that lie at the intersection of cognitive science and control research.

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment Artificial Intelligence

Many transfer problems require re-using previously optimal decisions for solving new tasks, which suggests the need for learning algorithms that can modify the mechanisms for choosing certain actions independently of those for choosing others. However, there is currently no formalism nor theory for how to achieve this kind of modular credit assignment. To answer this question, we define modular credit assignment as a constraint on minimizing the algorithmic mutual information among feedback signals for different decisions. We introduce what we call the modularity criterion for testing whether a learning algorithm satisfies this constraint by performing causal analysis on the algorithm itself. We generalize the recently proposed societal decision-making framework as a more granular formalism than the Markov decision process to prove that for decision sequences that do not contain cycles, certain single-step temporal difference action-value methods meet this criterion while all policy-gradient methods do not. Empirical evidence suggests that such action-value methods are more sample efficient than policy-gradient methods on transfer problems that require only sparse changes to a sequence of previously optimal decisions.

Control of mental representations in human planning Artificial Intelligence

One of the most striking features of human cognition is the capacity to plan. Two aspects of human planning stand out: its efficiency, even in complex environments, and its flexibility, even in changing environments. Efficiency is especially impressive because directly computing an optimal plan is intractable, even for modestly complex tasks, and yet people successfully solve myriad everyday problems despite limited cognitive resources. Standard accounts in psychology, economics, and artificial intelligence have suggested this is because people have a mental representation of a task and then use heuristics to plan in that representation. However, this approach generally assumes that mental representations are fixed. Here, we propose that mental representations can be controlled and that this provides opportunities to adaptively simplify problems so they can be more easily reasoned about -- a process we refer to as construal. We construct a formal model of this process and, in a series of large, pre-registered behavioral experiments, show both that construal is subject to online cognitive control and that people form value-guided construals that optimally balance the complexity of a representation and its utility for planning and acting. These results demonstrate how strategically perceiving and conceiving problems facilitates the effective use of limited cognitive resources.

From partners to populations: A hierarchical Bayesian account of coordination and convention Artificial Intelligence

Languages are powerful solutions to coordination problems: they provide stable, shared expectations about how the words we say correspond to the beliefs and intentions in our heads. Yet language use in a variable and non-stationary social environment requires linguistic representations to be flexible: old words acquire new ad hoc or partner-specific meanings on the fly. In this paper, we introduce a hierarchical Bayesian theory of convention formation that aims to reconcile the long-standing tension between these two basic observations. More specifically, we argue that the central computational problem of communication is not simply transmission, as in classical formulations, but learning and adaptation over multiple timescales. Under our account, rapid learning within dyadic interactions allows for coordination on partner-specific common ground, while social conventions are stable priors that have been abstracted away from interactions with multiple partners. We present new empirical data alongside simulations showing how our model provides a cognitive foundation for explaining several phenomena that have posed a challenge for previous accounts: (1) the convergence to more efficient referring expressions across repeated interaction with the same partner, (2) the gradual transfer of partner-specific common ground to novel partners, and (3) the influence of communicative context on which conventions eventually form.

Meta-Learning of Compositional Task Distributions in Humans and Machines Artificial Intelligence

Modern machine learning systems struggle with sample efficiency and are usually trained with enormous amounts of data for each task. This is in sharp contrast with humans, who often learn with very little data. In recent years, meta-learning, in which one trains on a family of tasks (i.e. a task distribution), has emerged as an approach to improving the sample complexity of machine learning systems and to closing the gap between human and machine learning. However, in this paper, we argue that current meta-learning approaches still differ significantly from human learning. We argue that humans learn over tasks by constructing compositional generative models and using these to generalize, whereas current meta-learning methods are biased toward the use of simpler statistical patterns. To highlight this difference, we construct a new meta-reinforcement learning task with a compositional task distribution. We also introduce a novel approach to constructing a "null task distribution" with the same statistical complexity as the compositional distribution but without explicit compositionality. We train a standard meta-learning agent, a recurrent network trained with model-free reinforcement learning, and compare it with human performance across the two task distributions. We find that humans do better in the compositional task distribution whereas the agent does better in the non-compositional null task distribution -- despite comparable statistical complexity. This work highlights a particular difference between human learning and current meta-learning models, introduces a task that displays this difference, and paves the way for future work on human-like meta-learning.

Learning Rewards from Linguistic Feedback Artificial Intelligence

We explore unconstrained natural language feedback as a learning signal for artificial agents. Humans use rich and varied language to teach, yet most prior work on interactive learning from language assumes a particular form of input (e.g. commands). We propose a general framework which does not make this assumption. We decompose linguistic feedback into two components: a grounding to $\textit{features}$ of a Markov decision process and $\textit{sentiment}$ about those features. We then perform an analogue of inverse reinforcement learning, regressing the teacher's sentiment on the features to infer their latent reward function. To evaluate our approach, we first collect a corpus of teaching behavior in a cooperative task where both teacher and learner are human. We use our framework to implement two artificial learners: a simple "literal" model and a "pragmatic" model with additional inductive biases. We baseline these with a neural network trained end-to-end to predict latent rewards. We then repeat our initial experiment pairing human teachers with our models. We find our "literal" and "pragmatic" models successfully learn from live human feedback and offer statistically-significant performance gains over the end-to-end baseline, with the "pragmatic" model approaching human performance on the task. Inspection reveals the end-to-end network learns representations similar to our models, suggesting they reflect emergent properties of the data. Our work thus provides insight into the information structure of naturalistic linguistic feedback as well as methods to leverage it for reinforcement learning.

Understanding Human Intelligence through Human Limitations Artificial Intelligence

Recent progress in artificial intelligence provides the opportunity to ask the question of what is unique about human intelligence, but with a new comparison class. I argue that we can understand human intelligence, and the ways in which it may di er from artificial intelligence, by considering the characteristics of the kind of computational problems that human minds have to solve. I claim that these problems acquire their structure from three fundamental limitations that apply to human beings: limited time, limited computation, and limited communication. From these limitations we can derive many of the properties we associate with human intelligence, such as rapid learning, the ability to break down problems into parts, and the capacity for cumulative cultural evolution. Understanding Human Intelligence through Human Limitations Di erent Computational Problems, Di erent Kinds of Intelligence As machines begin to outperform humans on an increasing number of tasks, it is natural to ask what is unique about human intelligence. Historically, this has been a question that is asked when comparing humans to other animals. The classical answer (from Aristotle, via the Scholastics) is to view humans as "rational animals" - animals that think [18]. More modern analyses of human uniqueness emphasize the "cognitive niche" that humans fill, able to use their minds to outsmart the biological defenses of their competitors [43], or contrast this with the "cultural niche" of being able to accumulate knowledge across individuals and generations in a way that makes it possible to live in an unusually diverse range of environments [10, 25, 26]. Asking the same question of what makes humans unique, but changing the contrast class to include intelligent machines, yields a very di erent kind of answer. In this article I argue that even as we develop potentially superhuman machines, there is going to be a flavor of intelligence that remains uniquely human.

Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions Machine Learning

This paper seeks to establish a framework for directing a society of simple, specialized, self-interested agents to solve what traditionally are posed as monolithic single-agent sequential decision problems. What makes it challenging to use a decentralized approach to collectively optimize a central objective is the difficulty in characterizing the equilibrium strategy profile of non-cooperative games. To overcome this challenge, we design a mechanism for defining the learning environment of each agent for which we know that the optimal solution for the global objective coincides with a Nash equilibrium strategy profile of the agents optimizing their own local objectives. The society functions as an economy of agents that learn the credit assignment process itself by buying and selling to each other the right to operate on the environment state. We derive a class of decentralized reinforcement learning algorithms that are broadly applicable not only to standard reinforcement learning but also for selecting options in semi-MDPs and dynamically composing computation graphs. Lastly, we demonstrate the potential advantages of a society's inherent modular structure for more efficient transfer learning.

Resource-rational Task Decomposition to Minimize Planning Costs Artificial Intelligence

People often plan hierarchically. That is, rather than planning over a monolithic representation of a task, they decompose the task into simpler subtasks and then plan to accomplish those. Although much work explores how people decompose tasks, there is less analysis of why people decompose tasks in the way they do. Here, we address this question by formalizing task decomposition as a resource-rational representation problem. Specifically, we propose that people decompose tasks in a manner that facilitates efficient use of limited cognitive resources given the structure of the environment and their own planning algorithms. Using this model, we replicate several existing findings. Our account provides a normative explanation for how people identify subtasks as well as a framework for studying how people reason, plan, and act using resource-rational representations.