Robust Full Bayesian Methods for Neural Networks
Andrieu, Christophe, Freitas, João F. G. de, Doucet, Arnaud
–Neural Information Processing Systems
In particular, Mackay showed that by approximating the distributions of the weights with Gaussians and adopting smoothing priors, it is possible to obtain estimates of the weights and output variances and to automatically set the regularisation coefficients. Neal (1996) cast the net much further by introducing advanced Bayesian simulation methods, specifically the hybrid Monte Carlo method, into the analysis of neural networks [3]. Bayesian sequential Monte Carlo methods have also been shown to provide good training results, especially in time-varying scenarios [4]. More recently, Rios Insua and Muller (1998) and Holmes and Mallick (1998) have addressed the issue of selecting the number of hidden neurons with growing and pruning algorithms from a Bayesian perspective [5,6]. In particular, they apply the reversible jump Markov Chain Monte Carlo (MCMC) algorithm of Green [7] to feed-forward sigmoidal networks and radial basis function (RBF) networks to obtain joint estimates of the number of neurons and weights. We also apply the reversible jump MCMC simulation algorithm to RBF networks so as to compute the joint posterior distribution of the radial basis parameters and the number of basis functions. However, we advance this area of research in two important directions. Firstly, we propose a full hierarchical prior for RBF networks.
Neural Information Processing Systems
Dec-31-2000