Risk Sensitive Reinforcement Learning
Neuneier, Ralph, Mihatsch, Oliver
–Neural Information Processing Systems
A directed generative model for binary data using a small number of hidden continuous units is investigated. The relationships between the correlations of the underlying continuous Gaussian variables and the binary output variables are utilized to learn the appropriate weights of the network. The advantages of this approach are illustrated on a translationally invariant binary distribution and on handwritten digit images. Introduction Principal Components Analysis (PCA) is a widely used statistical technique for representing data with a large number of variables [1]. It is based upon the assumption that although the data is embedded in a high dimensional vector space, most of the variability in the data is captured by a much lower climensional manifold. In particular for PCA, this manifold is described by a linear hyperplane whose characteristic directions are given by the eigenvectors of the correlation matrix with the largest eigenvalues. The success of PCA and closely related techniques such as Factor Analysis (FA) and PCA mixtures clearly indicate that much real world data exhibit the low dimensional manifold structure assumed by these models [2, 3]. However, the linear manifold structure of PCA is not appropriate for data with binary valued variables.
Neural Information Processing Systems
Dec-31-1999
- Country:
- Asia > Middle East
- Israel (0.14)
- North America > United States (0.28)
- Asia > Middle East
- Industry:
- Banking & Finance > Trading (0.70)
- Technology: