Neuneier, Ralph
Active Portfolio-Management based on Error Correction Neural Networks
Zimmermann, Hans-Georg, Neuneier, Ralph, Grothmann, Ralph
This paper deals with a neural network architecture which establishes a portfolio management system similar to the Black / Litterman approach. This allocation scheme distributes funds across various securities or financial markets while simultaneously complying with specific allocation constraints which meet the requirements of an investor. The portfolio optimization algorithm is modeled by a feedforward neural network. The underlying expected return forecasts are based on error correction neural networks (ECNN), which utilize the last model error as an auxiliary input to evaluate their own misspecification. The portfolio optimization is implemented such that (i.) the allocations comply with investor's constraints and that (ii.) the risk of the portfolio can be controlled.
Active Portfolio-Management based on Error Correction Neural Networks
Zimmermann, Hans-Georg, Neuneier, Ralph, Grothmann, Ralph
This paper deals with a neural network architecture which establishes a portfolio management system similar to the Black / Litterman approach. This allocation scheme distributes funds across various securities or financial marketswhile simultaneously complying with specific allocation constraints which meet the requirements of an investor. The portfolio optimization algorithm is modeled by a feedforward neural network. The underlying expected return forecasts are based on error correction neural networks (ECNN), which utilize the last model error as an auxiliary input to evaluate their own misspecification. The portfolio optimization is implemented such that (i.) the allocations comply with investor's constraints and that (ii.) the risk of the portfolio canbe controlled.
Risk Sensitive Reinforcement Learning
Neuneier, Ralph, Mihatsch, Oliver
A directed generative model for binary data using a small number of hidden continuous units is investigated. The relationships between the correlations of the underlying continuous Gaussian variables and the binary output variables are utilized to learn the appropriate weights of the network. The advantages of this approach are illustrated on a translationally invariant binary distribution and on handwritten digit images. Introduction Principal Components Analysis (PCA) is a widely used statistical technique for representing data with a large number of variables [1]. It is based upon the assumption that although the data is embedded in a high dimensional vector space, most of the variability in the data is captured by a much lower climensional manifold. In particular for PCA, this manifold is described by a linear hyperplane whose characteristic directions are given by the eigenvectors of the correlation matrix with the largest eigenvalues. The success of PCA and closely related techniques such as Factor Analysis (FA) and PCA mixtures clearly indicate that much real world data exhibit the low dimensional manifold structure assumed by these models [2, 3]. However, the linear manifold structure of PCA is not appropriate for data with binary valued variables.
Risk Sensitive Reinforcement Learning
Neuneier, Ralph, Mihatsch, Oliver
A directed generative model for binary data using a small number of hidden continuous units is investigated. The relationships between the correlations of the underlying continuous Gaussian variables and the binary output variables are utilized to learn the appropriate weights of the network. The advantages of this approach are illustrated on a translationally invariant binary distribution and on handwritten digit images. Introduction Principal Components Analysis (PCA) is a widely used statistical technique for representing data with a large number of variables [1]. It is based upon the assumption that although the data is embedded in a high dimensional vector space, most of the variability in the data is captured by a much lower climensional manifold. In particular for PCA, this manifold is described by a linear hyperplane whose characteristic directions are given by the eigenvectors of the correlation matrix with the largest eigenvalues. The success of PCA and closely related techniques such as Factor Analysis (FA) and PCA mixtures clearly indicate that much real world data exhibit the low dimensional manifold structure assumed by these models [2, 3].
Risk Sensitive Reinforcement Learning
Neuneier, Ralph, Mihatsch, Oliver
A directed generative model for binary data using a small number of hidden continuous units is investigated. The relationships between the correlations of the underlying continuous Gaussian variables and the binary output variables are utilized to learn the appropriate weights of the network. The advantages of this approach are illustrated on a translationally invariant binary distribution and on handwritten digit images. Introduction Principal Components Analysis (PCA) is a widely used statistical technique for representing data with a large number of variables [1]. It is based upon the assumption that although the data is embedded in a high dimensional vector space, most of the variability in the data is captured by a much lower climensional manifold. In particular for PCA, this manifold is described by a linear hyperplane whose characteristic directions are given by the eigenvectors of the correlation matrix with the largest eigenvalues. The success of PCA and closely related techniques such as Factor Analysis (FA) and PCA mixtures clearly indicate that much real world data exhibit the low dimensional manifold structure assumed by these models [2, 3]. However, the linear manifold structure of PCA is not appropriate for data with binary valued variables.
Enhancing Q-Learning for Optimal Asset Allocation
Neuneier, Ralph
This paper enhances the Q-Iearning algorithm for optimal asset allocation proposedin (Neuneier, 1996 [6]). The new formulation simplifies the approach by using only one value-function for many assets and allows model-freepolicy-iteration. After testing the new algorithm on real data, the possibility of risk management within the framework of Markov decision problems is analyzed. The proposed methods allows the construction of a multi-period portfolio management system which takes into account transaction costs, the risk preferences of the investor, and several constraints on the allocation. 1 Introduction
The Observer-Observation Dilemma in Neuro-Forecasting
Zimmermann, Hans-Georg, Neuneier, Ralph
We explain how the training data can be separated into clean information and unexplainable noise. Analogous to the data, the neural network is separated into a time invariant structure used for forecasting, and a noisy part. We propose a unified theory connecting the optimization algorithms for cleaning and learning together with algorithms that control the data noise and the parameter noise. The combined algorithm allows a data-driven local control of the liability of the network parameters and therefore an improvement in generalization. The approach is proven to be very useful at the task of forecasting the German bond market.
Enhancing Q-Learning for Optimal Asset Allocation
Neuneier, Ralph
This paper enhances the Q-Iearning algorithm for optimal asset allocation proposed in (Neuneier, 1996 [6]). The new formulation simplifies the approach by using only one value-function for many assets and allows model-free policy-iteration. After testing the new algorithm on real data, the possibility of risk management within the framework of Markov decision problems is analyzed. The proposed methods allows the construction of a multi-period portfolio management system which takes into account transaction costs, the risk preferences of the investor, and several constraints on the allocation. 1 Introduction
The Observer-Observation Dilemma in Neuro-Forecasting
Zimmermann, Hans-Georg, Neuneier, Ralph
We explain how the training data can be separated into clean information andunexplainable noise. Analogous to the data, the neural network is separated into a time invariant structure used for forecasting, and a noisy part. We propose a unified theory connecting the optimization algorithms forcleaning and learning together with algorithms that control the data noise and the parameter noise. The combined algorithm allows a data-driven local control of the liability of the network parameters and therefore an improvement in generalization. The approach is proven to be very useful at the task of forecasting the German bond market.
Early Brain Damage
Tresp, Volker, Neuneier, Ralph, Zimmermann, Hans-Georg
Optimal Brain Damage (OBD) is a method for reducing the number of weights in a neural network. OBD estimates the increase in cost function if weights are pruned and is a valid approximation if the learning algorithm has converged into a local minimum. On the other hand it is often desirable to terminate the learning process before a local minimum is reached (early stopping). In this paper we show that OBD estimates the increase in cost function incorrectly if the network is not in a local minimum. We also show how OBD can be extended such that it can be used in connection with early stopping. We call this new approach Early Brain Damage, EBD. EBD also allows to revive already pruned weights. We demonstrate the improvements achieved by EBD using three publicly available data sets.