Asynchronous Parallel Greedy Coordinate Descent
Yang You, Xiangru Lian, Ji Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, James Demmel, Cho-Jui Hsieh
–Neural Information Processing Systems
In this paper, we propose and study an Asynchronous parallel Greedy Coordinate Descent (Asy-GCD) algorithm for minimizing a smooth function with bounded constraints. At each iteration, workers asynchronously conduct greedy coordinate descent updates on a block of variables. In the first part of the paper, we analyze the theoretical behavior of Asy-GCD and prove a linear convergence rate. In the second part, we develop an efficient kernel SVM solver based on Asy-GCD in the shared memory multi-core setting. Since our algorithm is fully asynchronous--each core does not need to idle and wait for the other cores--the resulting algorithm enjoys good speedup and outperforms existing multi-core kernel SVM solvers including asynchronous stochastic coordinate descent and multi-core LIBSVM.
Neural Information Processing Systems
Jan-20-2025, 10:14:15 GMT
- Country:
- North America > United States > California (0.28)
- Genre:
- Research Report > New Finding (0.46)
- Industry:
- Government > Regional Government (0.46)
- Technology: