Cho-Jui Hsieh
GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking
Patrick Chen, Si Si, Yang Li, Ciprian Chelba, Cho-Jui Hsieh
Model compression is essential for serving large deep neural nets on devices with limited resources or applications that require real-time responses. As a case study, a neural language model usually consists of one or more recurrent layers sandwiched between an embedding layer used for representing input tokens and a softmax layer for generating output tokens. For problems with a very large vocabulary size, the embedding and the softmax matrices can account for more than half of the model size. For instance, the bigLSTM model achieves great performance on the One-Billion-Word (OBW) dataset with around 800k vocabulary, and its word embedding and softmax matrices use more than 6GBytes space, and are responsible for over 90% of the model parameters. In this paper, we propose GroupReduce, a novel compression method for neural language models, based on vocabulary-partition (block) based low-rank matrix approximation and the inherent frequency distribution of tokens (the power-law distribution of words). The experimental results show our method can significantly outperform traditional compression methods such as low-rank approximation and pruning. On the OBW dataset, our method achieved 6.6 times compression rate for the embedding and softmax matrices, and when combined with quantization, our method can achieve 26 times compression rate, which translates to a factor of 12.8 times compression for the entire model with very little degradation in perplexity.
Learning from Group Comparisons: Exploiting Higher Order Interactions
Yao Li, Minhao Cheng, Kevin Fujii, Fushing Hsieh, Cho-Jui Hsieh
We study the problem of learning from group comparisons, with applications in predicting outcomes of sports and online games. Most of the previous works in this area focus on learning individual effects--they assume each player has an underlying score, and the "ability" of the team is modeled by the sum of team members' scores. Therefore, current approaches cannot model deeper interaction between team members: some players perform much better if they play together, while some players perform poorly together. In this paper, we propose a new model that takes the player-interaction effects into consideration. However, under certain circumstances, the total number of individuals can be very large, and number of player interactions grows quadratically, which makes learning intractable. In this case, we propose a latent factor model, and show that the sample complexity of our model is bounded under mild assumptions. Finally, we show that our proposed models have much better prediction power on several E-sports datasets, and furthermore can be used to reveal interesting patterns that cannot be discovered by previous methods.
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers
Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James L. Sharpnack
In deep neural nets, lower level embedding layers account for a large portion of the total number of parameters. Tikhonov regularization, graph-based regularization, and hard parameter sharing are approaches that introduce explicit biases into training in a hope to reduce statistical complexity. Alternatively, we propose stochastic shared embeddings (SSE), a data-driven approach to regularizing embedding layers, which stochastically transitions between embeddings during stochastic gradient descent (SGD). Because SSE integrates seamlessly with existing SGD algorithms, it can be used with only minor modifications when training large scale neural networks. We develop two versions of SSE: SSE-Graph using knowledge graphs of embeddings; SSE-SE using no prior information. We provide theoretical guarantees for our method and show its empirical effectiveness on 6 distinct tasks, from simple neural networks with one hidden layer in recommender systems, to the transformer and BERT in natural languages. We find that when used along with widely-used regularization methods such as weight decay and dropout, our proposed SSE can further reduce overfitting, which often leads to more favorable generalization results.
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers
Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James L. Sharpnack
In deep neural nets, lower level embedding layers account for a large portion of the total number of parameters. Tikhonov regularization, graph-based regularization, and hard parameter sharing are approaches that introduce explicit biases into training in a hope to reduce statistical complexity. Alternatively, we propose stochastic shared embeddings (SSE), a data-driven approach to regularizing embedding layers, which stochastically transitions between embeddings during stochastic gradient descent (SGD). Because SSE integrates seamlessly with existing SGD algorithms, it can be used with only minor modifications when training large scale neural networks. We develop two versions of SSE: SSE-Graph using knowledge graphs of embeddings; SSE-SE using no prior information. We provide theoretical guarantees for our method and show its empirical effectiveness on 6 distinct tasks, from simple neural networks with one hidden layer in recommender systems, to the transformer and BERT in natural languages. We find that when used along with widely-used regularization methods such as weight decay and dropout, our proposed SSE can further reduce overfitting, which often leads to more favorable generalization results.
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, Jason D. Lee
Neural networks are vulnerable to adversarial examples, i.e. inputs that are imperceptibly perturbed from natural data and yet incorrectly classified by the network. Adversarial training [31], a heuristic form of robust optimization that alternates between minimization and maximization steps, has proven to be among the most successful methods to train networks to be robust against a pre-defined family of perturbations. This paper provides a partial answer to the success of adversarial training, by showing that it converges to a network where the surrogate loss with respect to the the attack algorithm is within ษ of the optimal robust loss. Then we show that the optimal robust loss is also close to zero, hence adversarial training finds a robust classifier.
Asynchronous Parallel Greedy Coordinate Descent
Yang You, Xiangru Lian, Ji Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, James Demmel, Cho-Jui Hsieh
In this paper, we propose and study an Asynchronous parallel Greedy Coordinate Descent (Asy-GCD) algorithm for minimizing a smooth function with bounded constraints. At each iteration, workers asynchronously conduct greedy coordinate descent updates on a block of variables. In the first part of the paper, we analyze the theoretical behavior of Asy-GCD and prove a linear convergence rate. In the second part, we develop an efficient kernel SVM solver based on Asy-GCD in the shared memory multi-core setting. Since our algorithm is fully asynchronous--each core does not need to idle and wait for the other cores--the resulting algorithm enjoys good speedup and outperforms existing multi-core kernel SVM solvers including asynchronous stochastic coordinate descent and multi-core LIBSVM.
Scalable Demand-Aware Recommendation
Jinfeng Yi, Cho-Jui Hsieh, Kush R. Varshney, Lijun Zhang, Yao Li
Recommendation for e-commerce with a mix of durable and nondurable goods has characteristics that distinguish it from the well-studied media recommendation problem. The demand for items is a combined effect of form utility and time utility, i.e., a product must both be intrinsically appealing to a consumer and the time must be right for purchase. In particular for durable goods, time utility is a function of inter-purchase duration within product category because consumers are unlikely to purchase two items in the same category in close temporal succession. Moreover, purchase data, in contrast to rating data, is implicit with non-purchases not necessarily indicating dislike. Together, these issues give rise to the positive-unlabeled demand-aware recommendation problem that we pose via joint low-rank tensor completion and product category inter-purchase duration vector estimation. We further relax this problem and propose a highly scalable alternating minimization approach with which we can solve problems with millions of users and millions of items in a single thread. We also show superior prediction accuracies on multiple real-world datasets.
Efficient Neural Network Robustness Certification with General Activation Functions
Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, Luca Daniel
Finding minimum distortion of adversarial examples and thus certifying robustness in neural network classifiers for given data points is known to be a challenging problem. Nevertheless, recently it has been shown to be possible to give a nontrivial certified lower bound of minimum adversarial distortion, and some recent progress has been made towards this direction by exploiting the piece-wise linear nature of ReLU activations. However, a generic robustness certification for general activation functions still remains largely unexplored.