Burst Synchronization without Frequency Locking in a Completely Solvable Neural Network Model

Schuster, Heinz, Koch, Christof

Neural Information Processing Systems 

Recently synchronization phenomena in neural networks have attracted considerable attention. Gray et al. (1989, 1990) as well as Eckhorn et al. (1988) provided electrophysiological evidence that neurons in the visual cortex of cats discharge in a semi-synchronous, oscillatory manner in the 40 Hz range and that the firing activity of neurons up to 10 mm away is phase-locked with a mean phase-shift of less than 3 msec. It has been proposed that this phase synchronization can solve the binding problem for figure-ground segregation (von der Malsburg and Schneider, 1986) and underly visual attention and awareness (Crick and Koch, 1990). A number of theoretical explanations based on coupled (relaxation) oscillator mod-117 118 Schuster and Koch els have been proposed for burst synchronization (Sompolinsky et al., 1990). The crucial issue of phase synchronization has also recently been addressed by Bush and Douglas (1991), who simulated the dynamics of a network consisting of bursty, layer V pyramidal cells coupled to a common pool of basket cells inhibiting all pyramidal cells.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found