Clustering Billions of Reads for DNA Data Storage
Cyrus Rashtchian, Konstantin Makarychev, Miklos Racz, Siena Ang, Djordje Jevdjic, Sergey Yekhanin, Luis Ceze, Karin Strauss
–Neural Information Processing Systems
Storing data in synthetic DNA offers the possibility of improving information density and durability by several orders of magnitude compared to current storage technologies. However, DNA data storage requires a computationally intensive process to retrieve the data. In particular, a crucial step in the data retrieval pipeline involves clustering billions of strings with respect to edit distance. Datasets in this domain have many notable properties, such as containing a very large number of small clusters that are well-separated in the edit distance metric space. In this regime, existing algorithms are unsuitable because of either their long running time or low accuracy. To address this issue, we present a novel distributed algorithm for approximately computing the underlying clusters.
Neural Information Processing Systems
May-28-2025, 03:55:46 GMT