Knowledge Processing for Autonomous Robot Control

Tenorth, Moritz (Technische Universitaet Muenchen) | Beetz, Michael (Technische Universitaet Muenchen)

AAAI Conferences 

Successfully accomplishing everyday manipulation tasks requires robots to have substantial knowledge about the objects they interact with, the environment they operate in as well as about the properties and effects of the actions they perform. Often, this knowledge is implicitly contained in manually written control programs, which makes it hard for the robot to adapt to newly acquired information or to re-use knowledge in a different context. By explicitly representing this knowledge, control decisions can be formulated as inference tasks which can be sent as queries to a knowledge base. This allows the robot to take all information it has at query time into account to generate answers, leading to better flexibility, adaptability to changing situations, robustness, and the ability to re-use knowledge once acquired. In this paper, we report on our work towards a practical and grounded knowledge representation and inference system. The system is specifically designed to meet the challenges created by using knowledge processing techniques on autonomous robots, including specialized inference methods, grounding of symbolic knowledge in the robot's control structures, and the acquisition of the different kinds of knowledge a robot needs.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found