Spectroscopic Detection of Cervical Pre-Cancer through Radial Basis Function Networks

Tumer, Kagan, Ramanujam, Nirmala, Richards-Kortum, Rebecca R., Ghosh, Joydeep

Neural Information Processing Systems 

The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. RBF ensemble algorithms based on such spectra provide automated, and near realtime implementation of pre-cancer detection in the hands of nonexperts. The results are more reliable, direct and accurate than those achieved by either human experts or multivariate statistical algorithms. 1 Introduction Cervical carcinoma is the second most common cancer in women worldwide, exceeded only by breast cancer (Ramanujam et al., 1996). The mortality related to cervical cancer can be reduced if this disease is detected at the precancerous state, known as squamous intraepitheliallesion (SIL). Currently, a Pap smear is used to 982 K. Turner, N. Ramanujam, R. Richards-Kortum and J. Ghosh screen for cervical cancer {Kurman et al., 1994}. In a Pap test, a large number of cells obtained by scraping the cervical epithelium are smeared onto a slide which is then fixed and stained for cytologic examination.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found