Detecting Cyberattack Entities from Audit Data via Multi-View Anomaly Detection with Feedback
Siddiqui, Md Amran (Oregon State University) | Fern, Alan (Oregon State University) | Wright, Ryan (Galois, Inc.) | Theriault, Alec (Galois, Inc.) | Archer, David (Galois, Inc.) | Maxwell, William (Galois, Inc.)
In this paper, we consider the problem of detecting unknown cyberattacks from audit data of system-level events. A key challenge is that different cyberattacks will have different suspicion indicators, which are not known beforehand. To address this we consider a multi-view anomaly detection framework, where multiple expert-designed ``views" of the data are created for capturing features that may serve as potential indicators. Anomaly detectors are then applied to each view and the results are combined to yield an overall suspiciousness ranking of system entities. Unfortunately, there is often a mismatch between what anomaly detection algorithms find and what is actually malicious, which can result in many false positives. This problem is made even worse in the multi-view setting, where only a small subset of the views may be relevant to detecting a particular cyberattack. To help reduce the false positive rate, a key contribution of this paper is to incorporate feedback from security analysts about whether proposed suspicious entities are of interest or likely benign. This feedback is incorporated into subsequent anomaly detection in order to improve the suspiciousness ranking toward entities that are truly of interest to the analyst. For this purpose, we propose an easy to implement variant of the perceptron learning algorithm, which is shown to be quite effective on benchmark datasets. We evaluate our overall approach on real attack data from a DARPA red team exercise, which include multiple attacks on multiple operating systems. The results show that the incorporation of feedback can significantly reduce the time required to identify malicious system entities.
Apr-6-2018
- Industry:
- Government > Military
- Cyberwarfare (1.00)
- Information Technology > Security & Privacy (1.00)
- Government > Military
- Technology: