DMNet: Self-comparison Driven Model for Subject-independent Seizure Detection
–Neural Information Processing Systems
Automated seizure detection (ASD) using intracranial electroencephalography (iEEG) is critical for effective epilepsy treatment. However, the significant domain shift of iEEG signals across subjects poses a major challenge, limiting their applicability in real-world clinical scenarios. In this paper, we address this issue by analyzing the primary cause behind the failure of existing iEEG models for subject-independent seizure detection, and identify a critical universal seizure pattern: seizure events consistently exhibit higher average amplitude compared to adjacent normal events. To mitigate the domain shifts and preserve the universal seizure patterns, we propose a novel self-comparison mechanism.
Neural Information Processing Systems
Mar-19-2025, 12:44:33 GMT
- Country:
- Europe > Czechia (0.14)
- North America > United States (0.14)
- Genre:
- Research Report
- Experimental Study (1.00)
- New Finding (1.00)
- Research Report
- Industry:
- Health & Medicine > Therapeutic Area
- Genetic Disease (1.00)
- Neurology > Epilepsy (1.00)
- Health & Medicine > Therapeutic Area
- Technology: