Transfer Learning in a Transductive Setting
–Neural Information Processing Systems
Category models for objects or activities typically rely on supervised learning requiring sufficiently large training sets. Transferring knowledge from known categories to novel classes with no or only a few labels is far less researched even though it is a common scenario. In this work, we extend transfer learning with semi-supervised learning to exploit unlabeled instances of (novel) categories with no or only a few labeled instances. Our proposed approach Propagated Semantic Transfer combines three techniques. First, we transfer information from known to novel categories by incorporating external knowledge, such as linguistic or expertspecified information, e.g., by a mid-level layer of semantic attributes.
Neural Information Processing Systems
Mar-13-2024, 15:37:38 GMT
- Technology: