End-to-end Learnable Clustering for Intent Learning in Recommendation

Neural Information Processing Systems 

Intent learning, which aims to learn users' intents for user understanding and item recommendation, has become a hot research spot in recent years. However, existing methods suffer from complex and cumbersome alternating optimization, limiting performance and scalability. To this end, we propose a novel intent learning method termed ELCRec, by unifying behavior representation learning into an End-to-end Learnable Clustering framework, for effective and efficient Recommendation.