On Input Selection with Reversible Jump Markov Chain Monte Carlo Sampling

Sykacek, Peter

Neural Information Processing Systems 

In this paper we will treat input selection for a radial basis function (RBF) like classifier within a Bayesian framework. We approximate the a-posteriori distribution over both model coefficients and input subsets by samples drawn with Gibbs updates and reversible jump moves. Using some public datasets, we compare the classification accuracy of the method with a conventional ARD scheme. These datasets are also used to infer the a-posteriori probabilities of different input subsets. 1 Introduction Methods that aim to determine relevance of inputs have always interested researchers in various communities. Classical feature subset selection techniques, as reviewed in [1], use search algorithms and evaluation criteria to determine one optimal subset.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found