Towards Accurate and Fair Cognitive Diagnosis via Monotonic Data Augmentation 1,2 Qi Liu

Neural Information Processing Systems 

Intelligent education stands as a prominent application of machine learning. Within this domain, cognitive diagnosis (CD) is a key research focus that aims to diagnose students' proficiency levels in specific knowledge concepts. As a crucial task within the field of education, cognitive diagnosis encompasses two fundamental requirements: accuracy and fairness. Existing studies have achieved significant success by primarily utilizing observed historical logs of student-exercise interactions. However, real-world scenarios often present a challenge, where a substantial number of students engage with a limited number of exercises.