Goto

Collaborating Authors

 Supervised Learning


Adversarial Auto-encoders for Speech Based Emotion Recognition

arXiv.org Machine Learning

Recently, generative adversarial networks and adversarial autoencoders have gained a lot of attention in machine learning community due to their exceptional performance in tasks such as digit classification and face recognition. They map the autoencoder's bottleneck layer output (termed as code vectors) to different noise Probability Distribution Functions (PDFs), that can be further regularized to cluster based on class information. In addition, they also allow a generation of synthetic samples by sampling the code vectors from the mapped PDFs. Inspired by these properties, we investigate the application of adversarial autoencoders to the domain of emotion recognition. Specifically, we conduct experiments on the following two aspects: (i) their ability to encode high dimensional feature vector representations for emotional utterances into a compressed space (with a minimal loss of emotion class discriminability in the compressed space), and (ii) their ability to regenerate synthetic samples in the original feature space, to be later used for purposes such as training emotion recognition classifiers. We demonstrate the promise of adversarial autoencoders with regards to these aspects on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) corpus and present our analysis.


GuideR: a guided separate-and-conquer rule learning in classification, regression, and survival settings

arXiv.org Machine Learning

This article presents GuideR, a user-guided rule induction algorithm, which overcomes the largest limitation of the existing methods-the lack of the possibility to introduce user's preferences or domain knowledge to the rule learning process. Automatic selection of attributes and attribute ranges often leads to the situation in which resulting rules do not contain interesting information. We propose an induction algorithm which takes into account user's requirements. Our method uses the sequential covering approach and is suitable for classification, regression, and survival analysis problems. The effectiveness of the algorithm in all these tasks has been verified experimentally, confirming guided rule induction to be a powerful data analysis tool.


Querying Complex Networks in Vector Space

arXiv.org Machine Learning

Learning vector embeddings of complex networks is a powerful approach used to predict missing or unobserved edges in network data. However, an open challenge in this area is developing techniques that can reason about $\textit{subgraphs}$ in network data, which can involve the logical conjunction of several edge relationships. Here we introduce a framework to make predictions about conjunctive logical queries---i.e., subgraph relationships---on heterogeneous network data. In our approach, we embed network nodes in a low-dimensional space and represent logical operators as learned geometric operations (e.g., translation, rotation) in this embedding space. We prove that a small set of geometric operations are sufficient to represent conjunctive logical queries on a network, and we introduce a series of increasingly strong implementations of these operators. We demonstrate the utility of this framework in two application studies on networks with millions of edges: predicting unobserved subgraphs in a network of drug-gene-disease interactions and in a network of social interactions derived from a popular web forum. These experiments demonstrate how our framework can efficiently make logical predictions such as "what drugs are likely to target proteins involved with both diseases X and Y?" Together our results highlight how imposing logical structure can make network embeddings more useful for large-scale knowledge discovery.


Similarity encoding for learning with dirty categorical variables

arXiv.org Machine Learning

For statistical learning, categorical variables in a table are usually considered as discrete entities and encoded separately to feature vectors, e.g., with one-hot encoding. "Dirty" non-curated data gives rise to categorical variables with a very high cardinality but redundancy: several categories reflect the same entity. In databases, this issue is typically solved with a deduplication step. We show that a simple approach that exposes the redundancy to the learning algorithm brings significant gains. We study a generalization of one-hot encoding, similarity encoding, that builds feature vectors from similarities across categories. We perform a thorough empirical validation on non-curated tables, a problem seldom studied in machine learning. Results on seven real-world datasets show that similarity encoding brings significant gains in prediction in comparison with known encoding methods for categories or strings, notably one-hot encoding and bag of character n-grams. We draw practical recommendations for encoding dirty categories: 3-gram similarity appears to be a good choice to capture morphological resemblance. For very high-cardinality, dimensionality reduction significantly reduces the computational cost with little loss in performance: random projections or choosing a subset of prototype categories still outperforms classic encoding approaches.


Learning from Exemplars and Prototypes in Machine Learning and Psychology

arXiv.org Artificial Intelligence

This paper draws a parallel between similarity-based categorisation models developed in cognitive psychology and the nearest neighbour classifier (1-NN) in machine learning. Conceived as a result of the historical rivalry between prototype theories (abstraction) and exemplar theories (memorisation), recent models of human categorisation seek a compromise in-between. Regarding the stimuli (entities to be categorised) as points in a metric space, machine learning offers a large collection of methods to select a small, representative and discriminative point set. These methods are known under various names: instance selection, data editing, prototype selection, prototype generation or prototype replacement. The nearest neighbour classifier is used with the selected reference set. Such a set can be interpreted as a data-driven categorisation model. We juxtapose the models from the two fields to enable cross-referencing. We believe that both machine learning and cognitive psychology can draw inspiration from the comparison and enrich their repertoire of similarity-based models.


Persistence paths and signature features in topological data analysis

arXiv.org Machine Learning

We introduce a new feature map for barcodes that arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations - barcode to path, path to tensor series - results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks.



On representation power of neural network-based graph embedding and beyond

arXiv.org Machine Learning

The representation power of similarity functions used in neural network-based graph embedding is considered. The inner product similarity (IPS) with feature vectors computed via neural networks is commonly used for representing the strength of association between two nodes. However, only a little work has been done on the representation capability of IPS. A very recent work shed light on the nature of IPS and reveals that IPS has the capability of approximating any positive definite (PD) similarities. However, a simple example demonstrates the fundamental limitation of IPS to approximate non-PD similarities. We then propose a novel model named Shifted IPS (SIPS) that approximates any Conditionally PD (CPD) similarities arbitrary well. CPD is a generalization of PD with many examples such as negative Poincare distance and negative Wasserstein distance, thus SIPS has a potential impact to significantly improve the applicability of graph embedding without taking great care in configuring the similarity function. Our numerical experiments demonstrate the SIPS's superiority over IPS. In theory, we further extend SIPS beyond CPD by considering the inner product in Minkowski space so that it approximates more general similarities.


Adversarial Constraint Learning for Structured Prediction

arXiv.org Machine Learning

Constraint-based learning reduces the burden of collecting labels by having users specify general properties of structured outputs, such as constraints imposed by physical laws. We propose a novel framework for simultaneously learning these constraints and using them for supervision, bypassing the difficulty of using domain expertise to manually specify constraints. Learning requires a black-box simulator of structured outputs, which generates valid labels, but need not model their corresponding inputs or the input-label relationship. At training time, we constrain the model to produce outputs that cannot be distinguished from simulated labels by adversarial training. Providing our framework with a small number of labeled inputs gives rise to a new semi-supervised structured prediction model; we evaluate this model on multiple tasks --- tracking, pose estimation and time series prediction --- and find that it achieves high accuracy with only a small number of labeled inputs. In some cases, no labels are required at all.


Learning to Play General Video-Games via an Object Embedding Network

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL) has proven to be an effective tool for creating general video-game AI. However most current DRL video-game agents learn end-to-end from the video-output of the game, which is superfluous for many applications and creates a number of additional problems. More importantly, directly working on pixel-based raw video data is substantially distinct from what a human player does.In this paper, we present a novel method which enables DRL agents to learn directly from object information. This is obtained via use of an object embedding network (OEN) that compresses a set of object feature vectors of different lengths into a single fixed-length unified feature vector representing the current game-state and fulfills the DRL simultaneously. We evaluate our OEN-based DRL agent by comparing to several state-of-the-art approaches on a selection of games from the GVG-AI Competition. Experimental results suggest that our object-based DRL agent yields performance comparable to that of those approaches used in our comparative study.