Collaborating Authors

Supervised Learning: Instructional Materials

DeHIN: A Decentralized Framework for Embedding Large-scale Heterogeneous Information Networks Artificial Intelligence

Modeling heterogeneity by extraction and exploitation of high-order information from heterogeneous information networks (HINs) has been attracting immense research attention in recent times. Such heterogeneous network embedding (HNE) methods effectively harness the heterogeneity of small-scale HINs. However, in the real world, the size of HINs grow exponentially with the continuous introduction of new nodes and different types of links, making it a billion-scale network. Learning node embeddings on such HINs creates a performance bottleneck for existing HNE methods that are commonly centralized, i.e., complete data and the model are both on a single machine. To address large-scale HNE tasks with strong efficiency and effectiveness guarantee, we present \textit{Decentralized Embedding Framework for Heterogeneous Information Network} (DeHIN) in this paper. In DeHIN, we generate a distributed parallel pipeline that utilizes hypergraphs in order to infuse parallelization into the HNE task. DeHIN presents a context preserving partition mechanism that innovatively formulates a large HIN as a hypergraph, whose hyperedges connect semantically similar nodes. Our framework then adopts a decentralized strategy to efficiently partition HINs by adopting a tree-like pipeline. Then, each resulting subnetwork is assigned to a distributed worker, which employs the deep information maximization theorem to locally learn node embeddings from the partition it receives. We further devise a novel embedding alignment scheme to precisely project independently learned node embeddings from all subnetworks onto a common vector space, thus allowing for downstream tasks like link prediction and node classification.

A Gentle Introduction to Vector Space Models


Vector space models are to consider the relationship between data that are represented by vectors. It is popular in information retrieval systems but also useful for other purposes. Generally, this allows us to compare the similarity of two vectors from a geometric perspective. In this tutorial, we will see what is a vector space model and what it can do. A Gentle Introduction to Vector Space Models Photo by liamfletch, some rights reserved.

Network representation learning: A macro and micro view Artificial Intelligence

Graph is a universe data structure that is widely used to organize data in real-world. Various real-word networks like the transportation network, social and academic network can be represented by graphs. Recent years have witnessed the quick development on representing vertices in the network into a low-dimensional vector space, referred to as network representation learning. Representation learning can facilitate the design of new algorithms on the graph data. In this survey, we conduct a comprehensive review of current literature on network representation learning. Existing algorithms can be categorized into three groups: shallow embedding models, heterogeneous network embedding models, graph neural network based models. We review state-of-the-art algorithms for each category and discuss the essential differences between these algorithms. One advantage of the survey is that we systematically study the underlying theoretical foundations underlying the different categories of algorithms, which offers deep insights for better understanding the development of the network representation learning field.

Towards Explainable Fact Checking Machine Learning

The past decade has seen a substantial rise in the amount of mis- and disinformation online, from targeted disinformation campaigns to influence politics, to the unintentional spreading of misinformation about public health. This development has spurred research in the area of automatic fact checking, from approaches to detect check-worthy claims and determining the stance of tweets towards claims, to methods to determine the veracity of claims given evidence documents. These automatic methods are often content-based, using natural language processing methods, which in turn utilise deep neural networks to learn higher-order features from text in order to make predictions. As deep neural networks are black-box models, their inner workings cannot be easily explained. At the same time, it is desirable to explain how they arrive at certain decisions, especially if they are to be used for decision making. While this has been known for some time, the issues this raises have been exacerbated by models increasing in size, and by EU legislation requiring models to be used for decision making to provide explanations, and, very recently, by legislation requiring online platforms operating in the EU to provide transparent reporting on their services. Despite this, current solutions for explainability are still lacking in the area of fact checking. This thesis presents my research on automatic fact checking, including claim check-worthiness detection, stance detection and veracity prediction. Its contributions go beyond fact checking, with the thesis proposing more general machine learning solutions for natural language processing in the area of learning with limited labelled data. Finally, the thesis presents some first solutions for explainable fact checking.

Statistical embedding: Beyond principal components Machine Learning

There has been an intense recent activity in embedding of very high dimensional and nonlinear data structures, much of it in the data science and machine learning literature. We survey this activity in four parts. In the first part we cover nonlinear methods such as principal curves, multidimensional scaling, local linear methods, ISOMAP, graph based methods and kernel based methods. The second part is concerned with topological embedding methods, in particular mapping topological properties into persistence diagrams. Another type of data sets with a tremendous growth is very high-dimensional network data. The task considered in part three is how to embed such data in a vector space of moderate dimension to make the data amenable to traditional techniques such as cluster and classification techniques. The final part of the survey deals with embedding in $\mathbb{R}^2$, which is visualization. Three methods are presented: $t$-SNE, UMAP and LargeVis based on methods in parts one, two and three, respectively. The methods are illustrated and compared on two simulated data sets; one consisting of a triple of noisy Ranunculoid curves, and one consisting of networks of increasing complexity and with two types of nodes.

Online learning with exponential weights in metric spaces Machine Learning

The problem of online convex optimization (Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2012, Hazan, 2016) has become a strandard model of online learning. Its simple and flexible formulation as a repeated game, devoid of distributional assumptions on the data, has proven effective in framing theoretically a number of online prediction tasks including online recommendation systems, online portfolio selection or network routing problems. Traditionally studied in the context of Euclidean spaces, less seems to be known when the decision space is a more general metric space, with potentially no linear structure. In this paper, we extend the analysis of the exponentially weighted average (ewa) forecaster to some geodesic metric spaces. Motivations for this level of generality arise, for example, when the decision space is a smooth manifold. Such a scenario is routinely encountered in directional or shape statistics (Mardia, 1999) where observations take values in spheres, projective spaces or shape spaces.

Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels Artificial Intelligence

The knowledge of the label noise transition matrix, characterizing the probabilities of a training instance being wrongly annotated, is crucial to designing popular solutions to learning with noisy labels, including loss correction and loss reweighting approaches. Existing works heavily rely on the existence of "anchor points" or their approximates, defined as instances that belong to a particular class almost surely. Nonetheless, finding anchor points remains a non-trivial task, and the estimation accuracy is also often throttled by the number of available anchor points. In this paper, we propose an alternative option to the above task. Our main contribution is the discovery of an efficient estimation procedure based on a clusterability condition. We prove that with clusterable representations of features, using up to third-order consensuses of noisy labels among neighbor representations is sufficient to estimate a unique transition matrix. Compared with methods using anchor points, our approach uses substantially more instances and benefits from a much better sample complexity. We demonstrate the estimation accuracy and advantages of our estimates using both synthetic noisy labels (on CIFAR-10/100) and real human-level noisy labels (on Clothing1M and our self-collected human-annotated CIFAR-10).

Disambiguation of weak supervision with exponential convergence rates Artificial Intelligence

In many applications of machine learning, such as recommender systems, where an input characterizing a user should be matched with a target representing an ordering of a large number of items, accessing fully supervised data (,) is not an option. Instead, one should expect weak information on the target, which could be a list of previously taken (if items are online courses), watched (if items are plays), etc., items by a user characterized by the feature vector. This motivates weakly supervised learning, aiming at learning a mapping from inputs to targets in such a setting where tools from supervised learning can not be applied off-the-shelves. Recent applications of weakly supervised learning showcase impressive results in solving complex tasks such as action retrieval on instructional videos (Miech et al., 2019), image semantic segmentation (Papandreou et al., 2015), salient object detection (Wang et al., 2017), 3D pose estimation (Dabral et al., 2018), text-to-speech synthesis (Jia et al., 2018), to name a few. However, those applications of weakly supervised learning are usually based on clever heuristics, and theoretical foundations of learning from weakly supervised data are scarce, especially when compared to statistical learning literature on supervised learning (Vapnik, 1995; Boucheron et al., 2005; Steinwart and Christmann, 2008). We aim to provide a step in this direction. In this paper, we focus on partial labelling, a popular instance of weak supervision, approached with a structured prediction point of view Ciliberto et al. (2020). We detail this setup in Section 2. Our contributions are organized as follows.

Probabilistic Learning Vector Quantization on Manifold of Symmetric Positive Definite Matrices Machine Learning

In this paper, we develop a new classification method for manifold-valued data in the framework of probabilistic learning vector quantization. In many classification scenarios, the data can be naturally represented by symmetric positive definite matrices, which are inherently points that live on a curved Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, traditional Euclidean machine learning algorithms yield poor results on such data. In this paper, we generalize the probabilistic learning vector quantization algorithm for data points living on the manifold of symmetric positive definite matrices equipped with Riemannian natural metric (affine-invariant metric). By exploiting the induced Riemannian distance, we derive the probabilistic learning Riemannian space quantization algorithm, obtaining the learning rule through Riemannian gradient descent. Empirical investigations on synthetic data, image data , and motor imagery EEG data demonstrate the superior performance of the proposed method.

SB-MTL: Score-based Meta Transfer-Learning for Cross-Domain Few-Shot Learning Artificial Intelligence

While many deep learning methods have seen significant success in tackling the problem of domain adaptation and few-shot learning separately, far fewer methods are able to jointly tackle both problems in Cross-Domain Few-Shot Learning (CD-FSL). This problem is exacerbated under sharp domain shifts that typify common computer vision applications. In this paper, we present a novel, flexible and effective method to address the CD-FSL problem. Our method, called Score-based Meta Transfer-Learning (SB-MTL), combines transfer-learning and meta-learning by using a MAML-optimized feature encoder and a score-based Graph Neural Network. First, we have a feature encoder with specific layers designed to be fine-tuned. To do so, we apply a first-order MAML algorithm to find good initializations. Second, instead of directly taking the classification scores after fine-tuning, we interpret the scores as coordinates by mapping the pre-softmax classification scores onto a metric space. Subsequently, we apply a Graph Neural Network to propagate label information from the support set to the query set in our score-based metric space. We test our model on the Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL) benchmark, which includes a range of target domains with highly varying dissimilarity to the miniImagenet source domain. We observe significant improvements in accuracy across 5, 20 and 50 shot, and on the four target domains. In terms of average accuracy, our model outperforms previous transfer-learning methods by 5.93% and previous meta-learning methods by 14.28%.