Goto

Collaborating Authors

Supervised Learning


Generalization as Search

Classics

"The purpose of this paper is to compare various approaches to generalization in terms of a single framework. Toward this end, generalization is cast as a search problem, and alternative methods for generalization are characterized in terms of the search strategies that they employ. This characterization uncovers similarities among approaches, and leads to a comparison of relative capabilities and computational complexities of alternative approaches. The characterization allows a precise comparison of systems that utilize different representations for learned generalizations."Artificial Intelligence, 18 (2), 203-26.