Supervised Learning
Linear Relaxations for Finding Diverse Elements in Metric Spaces
Choosing a diverse subset of a large collection of points in a metric space is a fundamental problem, with applications in feature selection, recommender systems, web search, data summarization, etc. Various notions of diversity have been proposed, tailored to different applications. The general algorithmic goal is to find a subset of points that maximize diversity, while obeying a cardinality (or more generally, matroid) constraint. The goal of this paper is to develop a novel linear programming (LP) framework that allows us to design approximation algorithms for such problems. We study an objective known as {\em sum-min} diversity, which is known to be effective in many applications, and give the first constant factor approximation algorithm. Our LP framework allows us to easily incorporate additional constraints, as well as secondary objectives.
Improved Error Bounds for Tree Representations of Metric Spaces
Estimating optimal phylogenetic trees or hierarchical clustering trees from metric data is an important problem in evolutionary biology and data analysis. Intuitively, the goodness-of-fit of a metric space to a tree depends on its inherent treeness, as well as other metric properties such as intrinsic dimension. Existing algorithms for embedding metric spaces into tree metrics provide distortion bounds depending on cardinality. Because cardinality is a simple property of any set, we argue that such bounds do not fully capture the rich structure endowed by the metric. We consider an embedding of a metric space into a tree proposed by Gromov.
A Consistent Regularization Approach for Structured Prediction
We propose and analyze a regularization approach for structured prediction problems. We characterize a large class of loss functions that allows to naturally embed structured outputs in a linear space. We exploit this fact to design learning algorithms using a surrogate loss approach and regularization techniques. We prove universal consistency and finite sample bounds characterizing the generalization properties of the proposed method. Experimental results are provided to demonstrate the practical usefulness of the proposed approach.
Structured Prediction Theory Based on Factor Graph Complexity
We present a general theoretical analysis of structured prediction with a series of new results. We give new data-dependent margin guarantees for structured prediction for a very wide family of loss functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These are the tightest margin bounds known for both standard multi-class and general structured prediction problems. Our guarantees are expressed in terms of a data-dependent complexity measure, \emph{factor graph complexity}, which we show can be estimated from data and bounded in terms of familiar quantities for several commonly used hypothesis sets, and a sparsity measure for features and graphs. Our proof techniques include generalizations of Talagrand's contraction lemma that can be of independent interest.
Active Nearest-Neighbor Learning in Metric Spaces
We propose a pool-based non-parametric active learning algorithm for general metric spaces, called MArgin Regularized Metric Active Nearest Neighbor (MARMANN), which outputs a nearest-neighbor classifier. We give prediction error guarantees that depend on the noisy-margin properties of the input sample, and are competitive with those obtained by previously proposed passive learners. We prove that the label complexity of MARMANN is significantly lower than that of any passive learner with similar error guarantees. Our algorithm is based on a generalized sample compression scheme and a new label-efficient active model-selection procedure.
Language-based Action Concept Spaces Improve Video Self-Supervised Learning
Recent contrastive language image pre-training has led to learning highly transferable and robust image representations. However, adapting these models to video domain with minimal supervision remains an open problem. We explore a simple step in that direction, using language tied self-supervised learning to adapt an image CLIP model to the video domain. A backbone modified for temporal modeling is trained under self-distillation settings with train objectives operating in an action concept space. Feature vectors of various action concepts extracted from a language encoder using relevant textual prompts construct this space. A large language model aware of actions and their attributes generates the relevant textual prompts. We introduce two train objectives, concept distillation and concept alignment, that retain generality of original representations while enforcing relations between actions and their attributes. Our approach improves zero-shot and linear probing performance on three action recognition benchmarks.
Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures
Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case-- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest--and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes--a recent family of MPH descriptors--as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models--including prominent zero-shot models--are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes--or, in the case of zero-shot prediction, to improve its performance--without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping arg max with the Frรฉchet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes.
Structured Prediction with Stronger Consistency Guarantees
We present an extensive study of surrogate losses for structured prediction supported by H-consistency bounds. These are recently introduced guarantees that are more relevant to learning than Bayes-consistency, since they are not asymptotic and since they take into account the hypothesis set H used. We first show that no nontrivial H-consistency bound can be derived for widely used surrogate structured prediction losses. We then define several new families of surrogate losses, including structured comp-sum losses and structured constrained losses, for which we prove H-consistency bounds and thus Bayes-consistency. These loss functions readily lead to new structured prediction algorithms with stronger theoretical guarantees, based on their minimization. We describe efficient algorithms for minimizing several of these surrogate losses, including a new structured logistic loss.
Structured Prediction with Stronger Consistency Guarantees
We present an extensive study of surrogate losses for structured prediction supported by H-consistency bounds. These are recently introduced guarantees that are more relevant to learning than Bayes-consistency, since they are not asymptotic and since they take into account the hypothesis set H used. We first show that no nontrivial H-consistency bound can be derived for widely used surrogate structured prediction losses. We then define several new families of surrogate losses, including structured comp-sum losses and structured constrained losses, for which we prove H-consistency bounds and thus Bayes-consistency. These loss functions readily lead to new structured prediction algorithms with stronger theoretical guarantees, based on their minimization. We describe efficient algorithms for minimizing several of these surrogate losses, including a new structured logistic loss.